首页> 外文期刊>Circuits, systems and signal processing >Noise Time-Domain Signal Reconstruction of Passenger Head Position Considering Compressed Sensing and Multi-source Data Fusion
【24h】

Noise Time-Domain Signal Reconstruction of Passenger Head Position Considering Compressed Sensing and Multi-source Data Fusion

机译:考虑压缩传感和多源数据融合的乘客头部位置噪声时域信号重建

获取原文
获取原文并翻译 | 示例

摘要

Sound field reconstruction technology is used to provide accurate primary reference signals for active noise control systems by reconstructing the interior sound field. Traditionally, time-domain noise signal-based reconstruction modeling has certain deficiencies, such as large data volume, noise reconstruction model complexity and considerable time consumption. Hence, a novel Signal compression optimisation-based BP network for passenger head position signal reconstruction (CBHSR) algorithm is proposed. Based on compressed sensing, the proposed algorithm converts raw multi-source signals into the compressed domain to implement compressed sampling. The signal reconstruction model is created by regarding the optimal fitness value as the initial weight and the threshold of the signal reconstruction BP network, and training with the compressed multi-source data. The recovery compression signal method realizes the time-domain signal reconstruction of the passenger head position. The effectiveness of the proposed CBHSR algorithm is validated using noise signal sources collected from a vehicle. Compared with the reconstruction model of the BP algorithm, the proposed algorithm is superior in reconstruction accuracy and time consumption.
机译:声场重建技术用于通过重建内部声场来为有源噪声控制系统提供精确的主要参考信号。传统上,基于时域噪声信号的重建模型具有一定的缺陷,例如大数据量,噪声重建模型复杂性和相当大的时间消耗。因此,提出了一种用于乘客头位置信号重建(CBHSR)算法的基于新的基于信号压缩优化的BP网络。基于压缩感测,所提出的算法将原始多源信号转换为压缩域以实现压缩采样。通过关于信号重构BP网络的初始重量和阈值来创建信号重建模型,以及用压缩的多源数据训练。恢复压缩信号方法实现乘客头位置的时域信号重建。使用从车辆收集的噪声信号源进行验证所提出的CBHSR算法的有效性。与BP算法的重建模型相比,该算法的重建精度和时间消耗优异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号