首页> 外文期刊>Circuits, systems, and signal processing >Morphological Component Image Restoration by Employing Bregmanized Sparse Regularization and Anisotropic Total Variation
【24h】

Morphological Component Image Restoration by Employing Bregmanized Sparse Regularization and Anisotropic Total Variation

机译:通过使用BregManized稀疏正则化和各向异性总变化来通过形态分成像图像恢复

获取原文
获取原文并翻译 | 示例

摘要

Image deblurring is a fundamental problem in imaging field which often needs to recover the important structure of images. This paper addresses the image deblurring problem by considering an image as a combination of its cartoon (the piecewise smooth part of the image) and texture (the oscillation part of the image) components. To recover both of these parts, we propose the use of coupled analysis-based sparse representations to regularize the cartoon structure and the texture part of the image. We apply anisotropic total variation with a quadratic term to enhance the edges existing in the cartoon part. Furthermore, we develop a multivariable Bregman optimization method to solve the proposed image restoration model by combining the alternating minimization method and the split Bregman iteration. The experiments show that the proposed algorithm not only performs well for image decomposition, but also outperforms the previously established methods in terms of the visual residual error, the structure similarity index and the peak signal-to-noise ratio for image deblurring.
机译:图像去抑制是成像领域的基本问题,其通常需要恢复图像的重要结构。本文通过将图像视为其卡通(图像的分段平滑部分)和纹理(图像的振荡部分)组件来解决图像去掩盖问题。为了恢复这两种部分,我们建议使用基于耦合的分析的稀疏表示来规范卡通结构和图像的纹理部分。我们用二次术语应用各向异性总变化,以增强卡通部件中存在的边缘。此外,我们通过组合交替的最小化方法和拆分Bregman迭代来开发一种多变量的Bregman优化方法来解决所提出的图像恢复模型。实验表明,该算法不仅对图像分解进行良好,而且在视觉剩余误差,结构相似度指数和图像去纹的峰值信噪比方面也优于先前建立的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号