首页> 外文期刊>Circuits, systems, and signal processing >Robust Diffusion Huber-Based Normalized Least Mean Square Algorithm with Adjustable Thresholds
【24h】

Robust Diffusion Huber-Based Normalized Least Mean Square Algorithm with Adjustable Thresholds

机译:基于强大的扩散Huber归一化最小均方算法,可调节阈值

获取原文
获取原文并翻译 | 示例

摘要

To improve the performance of the diffusion Huber-based normalized least mean square algorithm in the presence of impulsive noise, this paper proposes a distributed recursion scheme to adjust the thresholds. Because of the decreasing characteristic of the thresholds, the proposed algorithm can also be interpreted as a robust diffusion normalized least mean square algorithm with variable step sizes so that it has not only fast convergence but also small steady-state estimation error. Based on the contaminated Gaussian model, we analyze the mean square behavior of the algorithm in impulsive noise. Moreover, to ensure good tracking capability of the algorithm for the sudden change of parameters of interest, a control strategy is given that resets the thresholds with their initial values. Simulations in various noise scenarios show that the proposed algorithm performs better than many existing diffusion algorithms.
机译:为了在存在脉冲噪声的情况下提高基于扩散的归一化最小值平均方形算法的扩散的归一化最小均方算法,提出了一种分布式递归方案来调整阈值。由于阈值的特性降低,所提出的算法也可以被解释为具有可变步长尺寸的鲁棒扩散归一化最小均方算法,使得它不仅快速收敛而且还具有小的稳态估计误差。基于受污染的高斯模型,我们分析了脉冲噪声算法的均方行为。此外,为了确保算法的良好跟踪能力,用于突然改变感兴趣的参数的突然变化,给出了一种控制策略,其与它们的初始值重置阈值。各种噪声场景中的模拟表明,所提出的算法比许多现有的扩散算法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号