首页> 外文期刊>Circuits, systems, and signal processing >Unsupervised Learning-Based Depth Estimation-Aided Visual SLAM Approach
【24h】

Unsupervised Learning-Based Depth Estimation-Aided Visual SLAM Approach

机译:无监督的基于学习的深度估计 - 辅助视觉血液

获取原文
获取原文并翻译 | 示例

摘要

Simultaneous localization and map construction (SLAM) tasks have been proven to benefit greatly from the depth information of the environment. In this paper, we first present an unsupervised end-to-end learning framework for the task of monocular depth and camera motion estimation from video sequences. The difference between our work and the existing unsupervised methods is that we not only use image reconstruction for supervising but also exploit the pose estimation method used in traditional SLAM approaches to enhance the supervised signal and add extra training constraints for the task of monocular depth and camera motion estimation. Furthermore, we successfully exploit our unsupervised learning framework to assist the traditional ORB-SLAM system when the initialization module of ORB-SLAM method could not match enough features. Qualitative and quantitative experiments have shown that our unsupervised learning framework performs the depth estimation task superior to the supervised methods and outperforms the previous state-of-the-art unsupervised approach by 13.5% on KITTI dataset. For the pose estimation task, our method performs comparably to the supervised methods that use ground-truth pose data for training. Besides, our unsupervised learning framework can significantly accelerate the initialization process of the traditional ORB-SLAM system and effectively improve the accuracy of environmental mapping in strong lighting and weak texture scenes.
机译:同时本地化和地图建设(SLAM)任务已被证明是从环境的深度信息中受益匪浅。在本文中,我们首先为来自视频序列的单眼深度和相机运动估计的任务提供了一个无监督的端到端学习框架。我们的工作与现有无监督方法之间的差异是我们不仅使用图像重建来监督,而且利用传统的血液方法中使用的姿势估计方法来增强监督信号,为单眼深度和相机添加额外的训练限制。运动估计。此外,我们成功利用我们无监督的学习框架来帮助传统的ORB-SLAM系统当ORB-SLAM方法的初始化模块无法匹配足够的功能时。定性和定量实验表明,我们无监督的学习框架执行优于监督方法的深度估计任务,并且优于先前的最先进的无监督方法13.5%在Kitti DataSet上。对于姿势估计任务,我们的方法与使用地面真理姿势数据进行培训的监督方法进行比较。此外,我们无监督的学习框架可以大大加快传统的ORB-SLAM系统的初始化过程,并有效提高强大照明和弱纹理场景中环境映射的准确性。

著录项

  • 来源
    《Circuits, systems, and signal processing》 |2020年第2期|543-570|共28页
  • 作者单位

    Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Proc Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Proc Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Proc Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Proc Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Proc Changsha 410073 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Monocular depth estimation; Pose estimation; Unsupervised learning; Visual SLAM system;

    机译:单眼深度估计;姿势估计;无监督学习;视觉猛击系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号