首页> 外文期刊>Circuits, systems, and signal processing >Lossless Compression of CT Images by an Improved Prediction Scheme Using Least Square Algorithm
【24h】

Lossless Compression of CT Images by an Improved Prediction Scheme Using Least Square Algorithm

机译:通过使用最小二乘算法改进的预测方案的改进预测方案无损压缩CT图像

获取原文
获取原文并翻译 | 示例

摘要

The storage and transmission of medical data such as CT/MR DICOM images are an essential part of the telemedicine application. In this paper, a prediction-based lossless compression algorithm using least square approach is proposed for the compression of CT images. Prior to compression, the preprocessing was performed by neutrosophic median filter. The gradient adjusted prediction scheme was employed for the determination of prediction coefficients, and polynomial least square fitting approach was used for optimal selection of prediction coefficients. The selected prediction coefficients are finally encoded by Huffman coder for transmission. The quality of the reconstructed image was validated by performance metrics and compared with other compression techniques like JPEG, contextual vector quantization and vector quantization using bat optimization (BAT-VQ). The proposed neutrosophic set-based least square compression algorithm was found to be efficient and tested on DICOM abdomen CT datasets. The hardware implementation was done by Raspberry Pi processor using Java platform for transferring the data through cloud network for telemedicine application.
机译:诸如CT / MR DICOM图像之类的医疗数据的存储和传输是远程医疗应用的重要组成部分。在本文中,提出了一种基于预测的无损压缩算法,用于压缩CT图像的压缩。在压制之前,通过中性学中值过滤器进行预处理。采用梯度调整的预测方案用于确定预测系数,并且使用多项式最小二乘拟合方法用于最佳选择预测系数。最终通过霍夫曼编码器来传输所选择的预测系数。通过性能指标验证重建图像的质量,并与使用BAT优化(BAT-VQ)等JPEG,上下文矢量量化和矢量量化等其他压缩技术进行了验证。发现了基于中性学集合的最小方形压缩算法在DICOM腹部CT数据集上是有效和测试的。硬件实现由Raspberry PI处理器使用Java平台来完成,用于将数据传输通过云网络进行远程医疗应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号