首页> 外文期刊>Circuits, systems, and signal processing >Recursive Median and Mean Partitioned One-to-One Gray Level Mapping Transformations for Image Enhancement
【24h】

Recursive Median and Mean Partitioned One-to-One Gray Level Mapping Transformations for Image Enhancement

机译:递归中位数和均值分区的一对一灰度映射图像增强变换

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two novel recursive partitioned one-to-one gray level mapping (RPOGM) algorithms, viz., recursive median partitioned one-to-one gray level mapping (RMDPOGM) and recursive mean partitioned one-to-one gray level mapping (RMPOGM). The proposed RPOGM methods serve multiple objectives and address the issues such as (i) intensity saturation, (ii) intensity compression and (iii) ensure uniform degree of enhancement of all gray levels and thus result in overall enhancement of the processed image. In RMPOGM, image/histogram is partitioned recursively, (recursion level restricted to two, resulting in four sub-histograms) based on mean. RMDPOGM is similar to RMPOGM except histogram partitioning is done based on median. In RPOGM methods, image-dependent weights for each sub-histogram are calculated separately. Later, these weights are used for transformation. Finally, all the transformed sub-images are combined to get the processed image. As the images processed by these methods are not having any loss of details, it results in retaining the structural details of the objects and hence preserves fine contours even after enhancement. This results in low gradient magnitude similarity deviation (GMSD) between the processed image and input image. Experimental results show the superiority of the proposed methods over the state-of-the-art histogram equalization methods in terms of preserving entropy, preserving mean brightness and having low GMSD.
机译:本文呈现了两种新颖递归分区一对一的灰度级映射(RPOGM)算法,VIZ,递归中位数分区一对一的灰度级映射(RMDPOGM)和递归均值分区一对一的灰度级映射( rmpogm)。所提出的RPOGM方法有多种目标,并解决(i)强度饱和度,(ii)强度压缩和(iii)等问题确保所有灰度水平的增强程度均匀,从而导致加工图像的总体增强。在RMPOGM中,图像/直方图递归地划分(递归级别限制为两个,导致基于均值的四个子直方图)。 rmdpogm类似于rmpogm,除了基于中位数完成直方图分区。在RPOGM方法中,分别计算每个子直方图的图像相关权重。后来,这些重量用于转换。最后,将所有转换的子图像组合以获取已处理的图像。由于这些方法处理的图像没有任何细节丢失,因此它导致保持物体的结构细节,因此即使在增强之后也可以保留细续轮廓。这导致处理图像和输入图像之间的低梯度幅度相似度偏差(GMSD)。实验结果表明,在保存熵,保持平均亮度并具有低GMSD方面,在最先进的直方图均衡方法上显示了所提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号