首页> 外文期刊>Circuits, systems, and signal processing >Recursive Median and Mean Partitioned One-to-One Gray Level Mapping Transformations for Image Enhancement
【24h】

Recursive Median and Mean Partitioned One-to-One Gray Level Mapping Transformations for Image Enhancement

机译:用于图像增强的递归中值和均值分割的一对一灰度映射转换

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two novel recursive partitioned one-to-one gray level mapping (RPOGM) algorithms, viz., recursive median partitioned one-to-one gray level mapping (RMDPOGM) and recursive mean partitioned one-to-one gray level mapping (RMPOGM). The proposed RPOGM methods serve multiple objectives and address the issues such as (i) intensity saturation, (ii) intensity compression and (iii) ensure uniform degree of enhancement of all gray levels and thus result in overall enhancement of the processed image. In RMPOGM, image/histogram is partitioned recursively, (recursion level restricted to two, resulting in four sub-histograms) based on mean. RMDPOGM is similar to RMPOGM except histogram partitioning is done based on median. In RPOGM methods, image-dependent weights for each sub-histogram are calculated separately. Later, these weights are used for transformation. Finally, all the transformed sub-images are combined to get the processed image. As the images processed by these methods are not having any loss of details, it results in retaining the structural details of the objects and hence preserves fine contours even after enhancement. This results in low gradient magnitude similarity deviation (GMSD) between the processed image and input image. Experimental results show the superiority of the proposed methods over the state-of-the-art histogram equalization methods in terms of preserving entropy, preserving mean brightness and having low GMSD.
机译:本文介绍了两种新颖的递归分区一对一灰度映射(RPOGM)算法,即递归中值分区一对一灰度映射(RMDPOGM)和递归均值分区一对一灰度映射( RMPOGM)。所提出的RPOMG方法服务于多个目标并解决诸如(i)强度饱和,(ii)强度压缩和(iii)确保所有灰度级的均匀增强程度并因此导致所处理图像的整体增强的问题。在RMPOGM中,图像/直方图基于平均值进行递归划分(递归级别限制为2,从而导致四个子直方图)。 RMDPOGM与RMPOGM相似,只不过直方图分区是根据中位数完成的。在RPOGM方法中,分别计算每个子直方图的图像相关权重。后来,这些权重用于转换。最后,将所有变换后的子图像进行合并以获得处理后的图像。由于通过这些方法处理的图像没有任何细节损失,因此导致保留了对象的结构细节,因此即使在增强后也可以保留精细的轮廓。这导致在处理的图像和输入图像之间的低梯度幅度相似度偏差(GMSD)。实验结果表明,相对于最新的直方图均衡方法,该方法在保持熵,保持平均亮度和低GMSD方面具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号