首页> 外文期刊>Circuits, systems, and signal processing >Robust Sparse Normalized LMAT Algorithms for Adaptive System Identification Under Impulsive Noise Environments
【24h】

Robust Sparse Normalized LMAT Algorithms for Adaptive System Identification Under Impulsive Noise Environments

机译:脉冲噪声环境下自适应系统辨识的鲁棒稀疏归一化LMAT算法

获取原文
获取原文并翻译 | 示例

摘要

It is known that the conventional adaptive filtering algorithms can have good performance for non-sparse systems identification, but unsatisfactory performance for sparse systems identification. The normalized least mean absolute third (NLMAT) algorithm which is based on the high-order error power criterion has a strong anti-jamming capability against the impulsive noise, but reduced estimation performance in case of sparse systems. In this paper, several sparse NLMAT algorithms are proposed by inducing sparse-penalty functions into the standard NLMAT algorithm in order to exploit the system sparsity. Simulation results are given to validate that the proposed sparse algorithms can achieve a substantial performance improvement for a sparse system and robustness to impulsive noise environments.
机译:众所周知,传统的自适应滤波算法对于非稀疏系统的识别具有良好的性能,但是对于稀疏系统的识别却不能令人满意。基于高阶误差功率准则的归一化最小均数绝对第三(NLMAT)算法对脉冲噪声具有很强的抗干扰能力,但在稀疏系统的情况下会降低估计性能。本文通过将稀疏惩罚函数引入标准NLMAT算法中,提出了几种稀疏NLMAT算法,以利用系统的稀疏性。仿真结果验证了所提出的稀疏算法能够为稀疏系统和脉冲噪声环境的鲁棒性带来实质性的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号