首页> 外文会议>International Conference on Communications >Complex Domain Adaptive System Identification Using Sparse Affine Projection Normalized Correlation Algorithms Under Impulsive Noises
【24h】

Complex Domain Adaptive System Identification Using Sparse Affine Projection Normalized Correlation Algorithms Under Impulsive Noises

机译:脉冲噪声下基于稀疏仿射投影归一化相关算法的复杂域自适应系统辨识

获取原文

摘要

Sparse adaptive filters are used extensively for enhancing the filter performance in a sparse system. The affine projection algorithm (APA) is effective in improving the convergence speed for strongly correlated input signals, but it is very sensitive to impulsive noise. Normalized Correlation Algorithm (NCA) is robust in impulsive noise environments. The affine projection normalized correlation algorithm (AP-NCA) used in complex-domain adaptive filters, combines the benefits of APA and NCA and it does not take into account the underlying sparsity information of the system. In this paper, we develop sparse AP-NCA algorithms to exploit system sparsity as well as to mitigate impulsive noise with correlated complex-valued input. Simulation results show that the proposed algorithms exhibit better performance than the AP-NCA for a sparse system. The robustness of these algorithms is evaluated in terms of Mean square error (MSE) performance in the adaptive system identification context.
机译:稀疏自适应滤波器被广泛用于增强稀疏系统中的滤波器性能。仿射投影算法(APA)可有效提高强相关输入信号的收敛速度,但对脉冲噪声非常敏感。归一化相关算法(NCA)在脉冲噪声环境中具有鲁棒性。复域自适应滤波器中使用的仿射投影归一化相关算法(AP-NCA)结合了APA和NCA的优点,并且没有考虑系统的基础稀疏性信息。在本文中,我们开发了稀疏的AP-NCA算法,以利用系统稀疏性并通过相关的复数值输入来减轻脉冲噪声。仿真结果表明,对于稀疏系统,该算法比AP-NCA算法具有更好的性能。这些算法的鲁棒性是根据自适应系统识别上下文中的均方误差(MSE)性能来评估的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号