首页> 外文期刊>Circuits, systems, and signal processing >Reduced-Complexity Polynomials with Memory Applied to the Linearization of Power Amplifiers with Real-Time Discrete Gain Control
【24h】

Reduced-Complexity Polynomials with Memory Applied to the Linearization of Power Amplifiers with Real-Time Discrete Gain Control

机译:具有存储器的降复杂度多项式,用于具有实时离散增益控制的功率放大器的线性化

获取原文
获取原文并翻译 | 示例

摘要

In reconfigurable power amplifiers (PAs), the efficiency can be improved by dynamically switching the discrete gain mode according to the input envelope amplitude. Nevertheless, discontinuities that occur between gain mode changes critically compromise the linearization capability of traditional digital baseband predistorters (DPDs) based on continuous polynomials with memory. To circumvent such drawback, this work introduces a model based on polynomials bounded at both sides and able to take into account commutation delays. Besides, two novel approaches are presented to the model order reduction without basis change. The effectiveness of the proposed approaches to linearize a 130nm CMOS class AB PA commutating in real time among three gain modes is certified based on Cadence Virtuoso and Matlab simulations. The proposed memory polynomial-based model was able to accurately model both direct and inverse transfer characteristics of a three gain mode PA, showing normalized mean square error results of about -41dB. Besides, a 25.5dB reduction in adjacent channel power ratio is provided by the inclusion of a 10 parameters DPD that adopts the proposed approaches, in comparison with unlinearized PA of same output mean power.
机译:在可重配置功率放大器(PA)中,可以通过根据输入包络幅度动态切换离散增益模式来提高效率。然而,在增益模式变化之间出现的不连续性严重损害了传统的基于基带存储多项式的数字基带预失真器(DPD)的线性化能力。为了避免这种缺点,这项工作引入了一个基于两侧有界的多项式的模型,该模型能够考虑换向延迟。此外,提出了两种新颖的方法来进行模型降阶而无需改变基础。基于Cadence Virtuoso和Matlab仿真,证明了在三种增益模式之间实时线性交换130nm CMOS AB AB PA的方法的有效性。所提出的基于存储多项式的模型能够准确地对三增益模式PA的正向和反向传输特性进行建模,从而显示出约-41dB的归一化均方误差结果。此外,与相同输出平均功率的非线性PA相比,通过采用10个参数DPD(采用建议的方法),可将相邻信道功率比降低25.5dB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号