首页> 外文期刊>Circuits, Devices & Systems, IET >Hybrid dual-complementary metal–oxide–semiconductor/memristor synapse-based neural network with its applications in image super-resolution
【24h】

Hybrid dual-complementary metal–oxide–semiconductor/memristor synapse-based neural network with its applications in image super-resolution

机译:基于混合双互补金属氧化物半导体/忆阻器突触的神经网络及其在图像超分辨率中的应用

获取原文
获取原文并翻译 | 示例

摘要

Biology-inspired neural computing is a potential candidate for the implementation of next-generation intelligent systems. Memristor is a passive electrical element with resistance-switching dynamics. Owing to its natural advantages of non-volatility, nanoscale geometries, and variable conductance, memristor can effectively simulate the synaptic connecting strength between the neurones in the multilayer neural networks. This study presents a kind of memristor synapse-based multilayer neural network hardware architecture with a suitable training methodology. Specifically, a novel dual-complementary metal-oxide-semiconductor/memristor synaptic circuit is presented, which is capable of performing the negative, zero, and positive synaptic weights via controlling the direction of current passing through the memristors. Then, the neurone circuit synthesised with multiple synaptic circuits and an activation unit is further designed, which can be utilised to constitute a compact multilayer neural network with fully connected configuration. Also, a hardware-friendly chip-in-the-loop training method is provided during the network training phase. For the verification purpose, the presented neural network is applied for the realisation of single image super-resolution reconstruction.
机译:受生物学启发的神经计算是实现下一代智能系统的潜在候选者。忆阻器是一种具有电阻切换动力学特性的无源电子元件。由于其固有的非挥发性,纳米级几何形状和可变电导的优势,忆阻器可以有效地模拟多层神经网络中神经元之间的突触连接强度。这项研究提出了一种基于忆阻器突触的多层神经网络硬件架构,并采用了合适的训练方法。具体而言,提出了一种新颖的双互补金属氧化物半导体/忆阻器突触电路,该电路能够通过控制流经忆阻器的电流方向来执行负,零和正突触权重。然后,进一步设计了由多个突触电路和一个激活单元合成的神经元电路,该神经元电路可用于构成具有完全连接配置的紧凑型多层神经网络。另外,在网络训练阶段提供了一种硬件友好的“在环芯片”训练方法。出于验证的目的,将所提出的神经网络用于实现单图像超分辨率重建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号