首页> 外文期刊>Circuits, Devices & Systems, IET >Enhanced memristor-based MNNs performance on noisy dataset resulting from memristive stochasticity
【24h】

Enhanced memristor-based MNNs performance on noisy dataset resulting from memristive stochasticity

机译:忆阻随机性在嘈杂数据集上增强了基于忆阻器的MNN性能

获取原文
获取原文并翻译 | 示例

摘要

Multilayer neural networks (MNNs) have achieved excellent performance in machine-learning domain. Memristors are a possible device for implementing MNNs in hardware with efficiency and limited area. In this work, a simple model of stochastic memristors was presented first. Then, an MNN architecture based on proposed memristor model was presented. The simulation processes on stochastic memristors were elaborated. The simulation demonstrates that the MNN classification accuracy based on stochastic memristors is usually higher than that based on deterministic memristors when the dataset noise is low. The results have significant meaning to develop analogue memristive devices or memristive chips for MNN applications.
机译:多层神经网络(MNN)在机器学习领域取得了出色的性能。忆阻器是在硬件中以有限的效率实现MNN的可能设备。在这项工作中,首先提出了一个简单的随机忆阻器模型。然后,提出了一种基于提出的忆阻器模型的MNN架构。阐述了随机忆阻器的仿真过程。仿真表明,当数据集噪声较低时,基于随机忆阻器的MNN分类精度通常要高于基于确定性忆阻器的MNN分类精度。该结果对于开发用于MNN应用的模拟忆阻器件或忆阻芯片具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号