首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >An adaptive vector quantizer based on the Gold-Washing method forimage compression
【24h】

An adaptive vector quantizer based on the Gold-Washing method forimage compression

机译:基于Gold-Washing方法的自适应矢量量化器用于图像压缩

获取原文
获取原文并翻译 | 示例

摘要

The VLSI architecture for an adaptive vector quantizer is presented. The adaptive vector quantization method does not require a-priori knowledge of the source statistics and the pre-trained codebook. The codebook is generated on the fly and is constantly updated to capture local textual features of data. The source data are directly compressed without requiring the generation of codebook in a separate pass. The adaptive method is based on backward adaption without any side information. The speed of data compression by using the proposed adaptive method is much faster than that by using the conventional vector quantization methods. The algorithm is shown to reach the rate distortion function for memoryless sources. In image processing, most smooth regions are matched by the code vectors and most edge data are preserved by using the block-data interpolation scheme. The VLSI architecture consists of two move-to-front vector quantizers and an index generator. It explores parallelism in the direction of the codebook size and pipelining in the direction of the vector dimension. According to the circuit simulations using the popular SPICE program, the computation power of the move-to-front vector quantizer can reach 40 billion operations per second at a system clock of 100 MHz by using 0.8 μm CMOS technology. It can provide a computing capability of 50 Mpixels per second for high-speed image compression. The proposed algorithm and architecture can lead to the development of a high-speed image compressor with great local adaptivity, minimized complexity, and fairly good compression ratio
机译:提出了用于自适应矢量量化器的VLSI体系结构。自适应矢量量化方法不需要先验知识的源统计和预训练的代码本。该码本是即时生成的,并且会不断更新以捕获数据的本地文本特征。直接压缩源数据,而无需单独生成密码本。自适应方法基于没有任何辅助信息的后向自适应。使用所提出的自适应方法的数据压缩速度比使用传统矢量量化方法的数据压缩速度快得多。对于无记忆源,该算法显示出达到了速率失真功能。在图像处理中,大多数平滑区域通过代码矢量进行匹配,并且大多数边缘数据通过使用块数据插值方案得以保留。 VLSI体系结构由两个前移矢量量化器和一个索引生成器组成。它探索了码本大小方向上的并行性,以及向量维方向上的流水线。根据使用流行的SPICE程序进行的电路仿真,通过使用0.8μmCMOS技术,在100 MHz的系统时钟下,前移矢量量化器的计算能力可以达到每秒400亿次操作。它可以提供每秒50 Mpixels的计算能力,用于高速图像压缩。所提出的算法和体系结构可以导致高速图像压缩器的开发,该图像压缩器具有很大的局部适应性,最小的复杂度和相当好的压缩率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号