...
首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >A hardware-oriented gold-washing adaptive vector quantizer and its VLSI architectures for image data compression
【24h】

A hardware-oriented gold-washing adaptive vector quantizer and its VLSI architectures for image data compression

机译:面向硬件的洗金自适应矢量量化器及其用于图像数据压缩的VLSI架构

获取原文
获取原文并翻译 | 示例
           

摘要

The gold-washing (GW) mechanism is an efficient on-line codebook refining technique for adaptive vector quantization (AVQ). However, the mechanism is essentially not suitable for hardware implementation. We propose a hardware-oriented GW-AVQ scheme based on the least-recently-used (LRU) strategy for codevector selection and the block-data-interpolation (BDI) algorithm for vector generation. We also present the VLSI architectures for the key components of GW-AVQ, including a 2-D systolic array (SABVQ) and a 1-D linear array (LABVQ) for full-search VQ, a pipeline BDI encoder (PBDI-E) and decoder (PBDI-D), and the LRU strategy. The SABVQ architecture can perform in O(k) time with O(N+N/k) area and O(k) I/O complexity; the LABVQ architecture reaches O(N) time, O(k+1) area, and O(k) I/O complexity, where k and N are the codevector dimension and codebook size, respectively. The PBDI architecture reaches O(1) time, O(k) area, and O(1) I/O complexity. The LRU architecture can perform in O(1) time, O(N) area and O(1) I/O complexity. With VHDL implementation, the maximum computational capacity of SABVQ, LABVQ, five-stage PBDI-E, PBDI-D, and LRU are 45, 2.8, 1667, 2232, and 246 (10/sup 6/ samples/s), respectively. These results are good enough for most of the practical image compression systems.
机译:洗金(GW)机制是一种用于自适应矢量量化(AVQ)的有效的在线码本精炼技术。但是,该机制本质上不适合硬件实现。我们基于用于代码矢量选择的最近最少使用(LRU)策略和用于矢量生成的块数据插值(BDI)算法,提出了一种面向硬件的GW-AVQ方案。我们还介绍了GW-AVQ关键组件的VLSI体系结构,包括用于全搜索VQ的2-D脉动阵列(SABVQ)和1-D线性阵列(LABVQ),流水线BDI编码器(PBDI-E)解码器(PBDI-D)和LRU策略。 SABVQ体系结构可以在O(k)时间内以O(N + N / k)面积和O(k)I / O复杂度执行; LABVQ架构达到O(N)时间,O(k + 1)区域和O(k)I / O复杂度,其中k和N分别是码矢量维和码本大小。 PBDI体系结构达到O(1)时间,O(k)面积和O(1)I / O复杂度。 LRU体系结构可以在O(1)时间,O(N)区域和O(1)I / O复杂度中执行。通过VHDL实施,SABVQ,LABVQ,五级PBDI-E,PBDI-D和LRU的最大计算能力分别为45、2.8、1667、2232和246(10 / sup 6 / sample / s)。这些结果对于大多数实际的图像压缩系统来说已经足够了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号