首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >A Network of Dynamic Probabilistic Models for Human Interaction Analysis
【24h】

A Network of Dynamic Probabilistic Models for Human Interaction Analysis

机译:用于人机交互分析的动态概率模型网络

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel method of analyzing human interactions based on the walking trajectories of human subjects, which provide elementary and necessary components for understanding and interpretation of complex human interactions in visual surveillance tasks. Our principal assumption is that an interaction episode is composed of meaningful small unit interactions, which we call “sub-interactions.” We model each sub-interaction by a dynamic probabilistic model and propose a modified factorial hidden Markov model (HMM) with factored observations. The complete interaction is represented with a network of dynamic probabilistic models (DPMs) by an ordered concatenation of sub-interaction models. The rationale for this approach is that it is more effective in utilizing common components, i.e., sub-interaction models, to describe complex interaction patterns. By assembling these sub-interaction models in a network, possibly with a mixture of different types of DPMs, such as standard HMMs, variants of HMMs, dynamic Bayesian networks, and so on, we can design a robust model for the analysis of human interactions. We show the feasibility and effectiveness of the proposed method by analyzing the structure of network of DPMs and its success on four different databases: a self-collected dataset, Tsinghua University''s dataset, the public domain CAVIAR dataset, and the Edinburgh Informatics Forum Pedestrian dataset.
机译:我们提出了一种新的方法来分析基于人类对象的行走轨迹的人类互动,它为理解和解释视觉监视任务中的复杂人类互动提供了基本和必要的组成部分。我们的主要假设是,互动情节是由有意义的小单元互动组成的,我们称之为“子互动”。我们通过动态概率模型对每个子交互进行建模,并提出带有因子观察值的改进的因子隐马尔可夫模型(HMM)。通过子交互模型的有序串联,用动态概率模型(DPM)网络表示完整的交互。这种方法的基本原理是,它在利用通用组件(即子交互模型)来描述复杂的交互模式方面更为有效。通过在网络中组装这些子交互模型,并可能将不同类型的DPM(例如标准HMM,HMM变体,动态贝叶斯网络等)混合在一起,我们可以设计一个健壮的模型来分析人类交互。通过分析DPM网络的结构及其在四个不同数据库上的成功,我们证明了该方法的可行性和有效性:一个自收集的数据集,清华大学的数据集,公共领域的CAVIAR数据集和爱丁堡信息学论坛行人数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号