首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Markerless Shape and Motion Capture From Multiview Video Sequences
【24h】

Markerless Shape and Motion Capture From Multiview Video Sequences

机译:多视图视频序列的无标记形状和运动捕捉

获取原文
获取原文并翻译 | 示例

摘要

We propose a new markerless shape and motion capture approach from multiview video sequences. The shape recovery method consists of two steps: separating and merging. In the separating step, the depth map represented with a point cloud for each view is generated by solving a proposed variational model, which is regularized by four constraints to ensure the accuracy and completeness of the reconstruction. Then, in the merging step, the point clouds of all the views are merged together and reconstructed into a 3-D mesh using a marching cubes method with silhouette constraints. Experiments show that the geometric details are faithfully preserved in each estimated depth map. The 3-D meshes reconstructed from the estimated depth maps are watertight and present rich geometric details, even for non-convex objects. Taking the reconstructed 3-D mesh as the underlying scene representation, a volumetric deformation method with a new positional-constraint computation scheme is proposed to automatically capture motions of the 3-D object. Our method can capture non-rigid motions even for loosely dressed humans without the aid of markers.
机译:我们从多视图视频序列中提出了一种新的无标记形状和运动捕获方法。形状恢复方法包括两个步骤:分离和合并。在分离步骤中,通过求解建议的变分模型来生成每个视图的以点云表示的深度图,该变分模型由四个约束条件进行正则化,以确保重建的准确性和完整性。然后,在合并步骤中,将所有视图的点云合并在一起,并使用具有轮廓约束的行进立方体方法将其重建为3-D网格。实验表明,几何细节在每个估计的深度图中都得到了忠实的保留。从估计的深度图重建的3D网格是水密的,即使对于非凸面对象,也呈现出丰富的几何细节。以重构的3-D网格为基础场景表示,提出了一种具有新的位置约束计算方案的体积变形方法来自动捕获3-D物体的运动。即使对于穿着宽松的人,我们的方法也可以捕获非刚性运动,而无需借助标记器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号