首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Markerless Motion Capture of Multiple Characters Using Multiview Image Segmentation
【24h】

Markerless Motion Capture of Multiple Characters Using Multiview Image Segmentation

机译:使用多视图图像分割的多字符无标记运动捕获

获取原文
获取原文并翻译 | 示例

摘要

Capturing the skeleton motion and detailed time-varying surface geometry of multiple, closely interacting peoples is a very challenging task, even in a multicamera setup, due to frequent occlusions and ambiguities in feature-to-person assignments. To address this task, we propose a framework that exploits multiview image segmentation. To this end, a probabilistic shape and appearance model is employed to segment the input images and to assign each pixel uniquely to one person. Given the articulated template models of each person and the labeled pixels, a combined optimization scheme, which splits the skeleton pose optimization problem into a local one and a lower dimensional global one, is applied one by one to each individual, followed with surface estimation to capture detailed nonrigid deformations. We show on various sequences that our approach can capture the 3D motion of humans accurately even if they move rapidly, if they wear wide apparel, and if they are engaged in challenging multiperson motions, including dancing, wrestling, and hugging.
机译:即使在多机位设置中,由于频繁进行遮挡和模棱两可的人身分配,捕获多个相互密切联系的人们的骨骼运动和详细的时变表面几何形状也是一项非常具有挑战性的任务。为了解决此任务,我们提出了一个利用多视图图像分割的框架。为此,采用概率形状和外观模型来分割输入图像并将每个像素唯一地分配给一个人。给定每个人的铰接模板模型和标记的像素,组合优化方案将骨骼姿态优化问题分为局部问题和低维全局问题,然后逐个应用于每个人,然后进行表面估计捕获详细的非刚性变形。我们在各种序列上展示了我们的方法可以准确捕捉人的3D运动,即使他们快速移动,穿着宽阔的衣服以及参与具有挑战性的多人运动,包括跳舞,摔跤和拥抱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号