首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Adaptive Slice Representation for Human Action Classification
【24h】

Adaptive Slice Representation for Human Action Classification

机译:人体动作分类的自适应切片表示

获取原文
获取原文并翻译 | 示例

摘要

Common action recognition methods describe an action sequence along with its time axis, i.e., first extracting features from the plane, and then modeling the dynamic changes along with the time axis. Other than the ordinary plane-based representation, other views, e.g., slice-based representation, may be more efficient to distinguish different actions. In this paper, we investigate different slicing views of the spatiotemporal volume to organize action sequences and propose an efficient slice representation for human action recognition. First, a minimum average entropy principle is proposed to select the optimal slicing angle for each action sequence adaptively. This allows the foreground pixels to be distributed in the fewest slices so as to reduce more uncertainty caused by the information dispersed in different slices. Then, the obtained slice sequence is transformed into a pair of 1-D signals to describe the distribution of foreground pixels along the time axis. Finally, the mel frequency cepstrum coefficient features are calculated to describe the spectrum characteristics of the 1-D signals over time. Thus, a 3-D spatiotemporal action volume is efficiently transformed into a low-dimensional spectrum features. Extensive experiments on the 2-D human action data sets (the UIUC and the WEIZMANN) as well as the Microsoft Research (MSR) Action3-D depth data set demonstrate the effectiveness of the slice-based representation, where the recognition performance can reach to the state-of-the-art level with high efficiency.
机译:常见的动作识别方法描述动作序列及其时间轴,即,首先从平面中提取特征,然后将动态变化与时间轴一起建模。除了基于普通平面的表示之外,其他视图(例如基于切片的表示)可能更有效地区分不同的动作。在本文中,我们研究了时空体积的不同切片视图,以组织动作序列,并提出了用于人类动作识别的有效切片表示。首先,提出了最小平均熵原理,为每个动作序列自适应地选择最佳的切角。这允许前景像素分布在最少的切片中,以减少由分散在不同切片中的信息引起的更多不确定性。然后,将获得的条带序列转换为一对一维信号,以描述前景像素沿时间轴的分布。最后,计算梅尔频率倒谱系数特征以描述一维信号随时间的频谱特征。因此,将3D时空活动量有效地转换为低维频谱特征。在2-D人体动作数据集(UIUC和WEIZMANN)以及Microsoft Research(MSR)Action3-D深度数据集上进行的大量实验证明了基于切片的表示的有效性,其中,识别性能可以达到最先进的水平和高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号