首页> 外文期刊>Multimedia, IEEE Transactions on >Effective Codebooks for Human Action Representation and Classification in Unconstrained Videos
【24h】

Effective Codebooks for Human Action Representation and Classification in Unconstrained Videos

机译:不受约束的视频中用于人类动作表示和分类的有效密码本

获取原文
获取原文并翻译 | 示例

摘要

Recognition and classification of human actions for annotation of unconstrained video sequences has proven to be challenging because of the variations in the environment, appearance of actors, modalities in which the same action is performed by different persons, speed and duration, and points of view from which the event is observed. This variability reflects in the difficulty of defining effective descriptors and deriving appropriate and effective codebooks for action categorization. In this paper, we propose a novel and effective solution to classify human actions in unconstrained videos. It improves on previous contributions through the definition of a novel local descriptor that uses image gradient and optic flow to respectively model the appearance and motion of human actions at interest point regions. In the formation of the codebook, we employ radius-based clustering with soft assignment in order to create a rich vocabulary that may account for the high variability of human actions. We show that our solution scores very good performance with no need of parameter tuning. We also show that a strong reduction of computation time can be obtained by applying codebook size reduction with Deep Belief Networks with little loss of accuracy.
机译:由于环境,演员的出现,不同人员执行同一动作的方式,速度和持续时间以及从观点来看的变化,事实证明,识别和分类人类动作以标注不受约束的视频序列非常困难。观察到的事件。这种可变性反映了难以定义有效的描述符以及难以为动作分类导出适当且有效的代码簿。在本文中,我们提出了一种新颖有效的解决方案,可以对不受约束的视频中的人类行为进行分类。它通过定义一个新颖的局部描述符来改进以前的贡献,该描述符使用图像梯度和光流分别模拟人类动作在兴趣点区域的出现和运动。在编写密码本的过程中,我们采用基于半径的聚类和软分配,以创建丰富的词汇表,从而可以解释人类行为的高度可变性。我们证明,我们的解决方案无需参数调整即可获得非常好的性能。我们还表明,通过使用Deep Belief Networks进行码本大小减小,可以在不降低准确性的情况下大大减少计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号