首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Contextual Exemplar Classifier-Based Image Representation for Classification
【24h】

Contextual Exemplar Classifier-Based Image Representation for Classification

机译:基于上下文样例分类器的图像表示

获取原文
获取原文并翻译 | 示例

摘要

The use of local features for image representation has become popular in recent years. Local features are often used in the bag-of-visual-words scheme. Although proven effective, this method still has two drawbacks. First, local regions from which local features are extracted are not discriminative enough for visual tasks. Hence, the combination of local features is necessary. Second, the semantic gap between visual features and human perception also hinders the performance. To address these two problems, in this paper, we propose a novel contextual exemplar classifier-based method for image representation and apply it for classification tasks. Each exemplar classifier is trained to separate one training image from the other images of different classes. We partition each image into a number of regions and use the responses of these exemplar classifiers as the image region’s representation. The contextual relationship is then modeled using mixture Dirichlet distributions. A bilayer model is used to predict image classes with constraints. Experimental results on the Natural Scene, Caltech-101/256, Flower-17/102, and SUN-397 data sets show that the proposed method is able to outperform the state-of-the-art local feature-based methods for image classification.
机译:近年来,将局部特征用于图像表示已经变得流行。视觉特征袋方案经常使用局部特征。尽管被证明是有效的,但是该方法仍然有两个缺点。首先,从中提取局部特征的局部区域对于视觉任务的区分度不足。因此,必须结合局部特征。其次,视觉特征和人类感知之间的语义鸿沟也阻碍了表演。为了解决这两个问题,在本文中,我们提出了一种新的基于上下文示例分类器的图像表示方法,并将其应用于分类任务。训练每个示例分类器以将一个训练图像与不同类别的其他图像分开。我们将每张图像划分为多个区域,并将这些示例性分类器的响应用作图像区域的表示。然后使用混合Dirichlet分布对上下文关系进行建模。双层模型用于预测具有约束的图像类别。在自然场景,Caltech-101 / 256,Flower-17 / 102和SUN-397数据集上的实验结果表明,该方法能够胜过基于最新局部特征的图像分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号