首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Real-Time Traffic Light Recognition Based on Smartphone Platforms
【24h】

Real-Time Traffic Light Recognition Based on Smartphone Platforms

机译:基于智能手机平台的实时交通信号灯识别

获取原文
获取原文并翻译 | 示例

摘要

Traffic light recognition is of great significance for driver assistance or autonomous driving. In this paper, a traffic light recognition system based on smartphone platforms is proposed. First, an ellipsoid geometry threshold model in Hue Saturation Lightness color space is built to extract interesting color regions. These regions are further screened with a postprocessing step to obtain candidate regions that satisfy both color and brightness conditions. Second, a new kernel function is proposed to effectively combine two heterogeneous features, histograms of oriented gradients and local binary pattern, which is used to describe the candidate regions of traffic light. A kernel extreme learning machine (K-ELM) is designed to validate these candidate regions and simultaneously recognize the phase and type of traffic lights. Furthermore, a spatial-temporal analysis framework based on a finite-state machine is introduced to enhance the reliability of the recognition of the phase and type of traffic light. Finally, a prototype of the proposed system is implemented on a Samsung Note 3 smartphone. To achieve a real-time computational performance of the proposed K-ELM, a CPU-GPU fusion-based approach is adopted to accelerate the execution. The experimental results on different road environments show that the proposed system can recognize traffic lights accurately and rapidly.
机译:交通灯识别对于驾驶员辅助或自动驾驶具有重要意义。本文提出了一种基于智能手机平台的交通信号灯识别系统。首先,在“色相饱和度亮度”颜色空间中建立椭圆形几何阈值模型,以提取有趣的颜色区域。使用后处理步骤进一步筛选这些区域,以获得同时满足颜色和亮度条件的候选区域。其次,提出了一种新的核函数,以有效地结合两个异构特征,即定向梯度直方图和局部二进制模式,用于描述交通灯的候选区域。内核极限学习机(K-ELM)设计用于验证这些候选区域并同时识别交通信号灯的相位和类型。此外,引入了基于有限状态机的时空分析框架,以增强识别交通信号灯的相位和类型的可靠性。最后,在三星Note 3智能手机上实现了拟议系统的原型。为了实现所提出的K-ELM的实时计算性能,采用了基于CPU-GPU融合的方法来加快执行速度。在不同道路环境下的实验结果表明,该系统能够准确,快速地识别交通信号灯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号