首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >An Ensemble of Invariant Features for Person Reidentification
【24h】

An Ensemble of Invariant Features for Person Reidentification

机译:人物识别的不变特征集合

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an ensemble of invariant features (EIFs), which can properly handle the variations of color difference and human poses/viewpoints for matching pedestrian images observed in different cameras with nonoverlapping field of views. Our proposed method is a direct reidentification (re-id) method, which requires no prior domain learning based on prelabeled corresponding training data. The novel features consist of the holistic and region-based features. The holistic features are extracted by using a publicly available pretrained deep convolutional neural network used in generic object classification. In contrast, the region-based features are extracted based on our proposed two-way Gaussian mixture model fitting, which overcomes the self-occlusion and pose variations. To make a better generalization during recognizing identities without additional learning, the ensemble scheme aggregates all the feature distances using the similarity normalization. The proposed framework achieves robustness against partial occlusion, pose, and viewpoint changes. Moreover, the evaluation results show that our method outperforms the state-of-the-art direct re-id methods on the challenging benchmark viewpoint invariant pedestrian recognition and 3D people surveillance data sets.
机译:本文提出了不变特征(EIF)的集合,它可以正确处理色差和人体姿势/视点的变化,以匹配在具有不重叠视野的不同相机中观察到的行人图像。我们提出的方法是直接重新识别(re-id)方法,该方法无需根据预先标记的相应训练数据进行事先的领域学习。新颖特征包括整体特征和基于区域的特征。通过使用在通用对象分类中使用的公开可用的预训练深度卷积神经网络来提取整体特征。相比之下,基于区域的特征是基于我们提出的双向高斯混合模型拟合提取的,该模型克服了自遮挡和姿势变化的问题。为了在识别身份的过程中更好地进行泛化而无需额外学习,集成方案使用相似性归一化来汇总所有特征距离。所提出的框架实现了针对部分遮挡,姿势和视点变化的鲁棒性。此外,评估结果表明,在具有挑战性的基准视点不变行人识别和3D人监视数据集方面,我们的方法优于最新的直接re-id方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号