首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Correlation Filter Tracking via Distractor-Aware Learning and Multi-Anchor Detection
【24h】

Correlation Filter Tracking via Distractor-Aware Learning and Multi-Anchor Detection

机译:通过触干管感知学习和多锚检测相关滤波器跟踪

获取原文
获取原文并翻译 | 示例

摘要

Correlation filter has demonstrated the power in object tracking, benefiting from its superior speed and competitive performance. However, existing correlation filter based trackers (CFTs) are fragile for some inherent defects caused by the boundary effect. To address this issue, we propose a novel correlation filter based tracking framework by integrating three highly collaborative components, including a fast target proposal module, a distractor-aware filter, and a correlation filter based refiner. Specifically, the target proposal aims at determining some target-like regions in contexts efficiently, which provides target-like patches to learn a distractor-aware filter and detect. Multi-region strategy enlarges space fields for learning and prediction. The filter learned from both target and distractors enhances its ability to identify background. Therefore, our method is capable of evaluating multiple candidates in wider context with less risk of drifting to distractors, namely multi-anchor detection. Besides, the proposed Proposal-Detect-Refine hierarchical searching process progressively achieves data alignment between testing and training samples, which benefits for reliable model prediction. A refiner is used to fine-tune positions after multi-anchor detection for lessening error accumulation and preventing model from drifting. Comprehensive experiments on five challenging datasets, i.e. OTB2013, OTB2015, VOT2017, VOT19, and TC128, demonstrate that the proposed method achieves superior performance against the state-of-the-art methods.
机译:相关滤波器已经证明了对象跟踪中的功率,从其卓越的速度和竞争性能中受益。但是,基于相关滤波器的跟踪器(CFT)对于由边界效应引起的某些固有缺陷是脆弱的。为了解决这个问题,我们提出了一种基于新的相关滤波器基于跟踪框架,通过集成三个高度协作组件,包括快速目标提议模块,令人满意的感知滤波器和基于相关滤波器的炼油器。具体地,目标提议旨在有效地确定在上下文中的一些类似地区,这提供了类似的斑块,以学习牵引者感知过滤器并检测。多区域策略扩大了学习和预测的空间领域。从目标和干扰者中学到的过滤器提高了其识别背景的能力。因此,我们的方法能够在更广泛的上下文中评估多个候选者,风险越越漂移到分散的人,即多锚检测。此外,所提出的提议检测 - 细化分层搜索过程逐渐实现了测试和训练样本之间的数据对齐,这有利于可靠的模型预测。在多锚检测后用于减少误差累积和防止模型漂移后的微调位置。关于五个具有挑战性的数据集的综合实验,即OTB2013,OTB2015,VOT2017,VOT19和TC128表明该方法达到了最先进的方法的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号