首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Bayesian Inferred Self-Attentive Aggregation for Multi-Shot Person Re-Identification
【24h】

Bayesian Inferred Self-Attentive Aggregation for Multi-Shot Person Re-Identification

机译:贝叶斯推断出多射击人重新识别的自我细分

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification is a challenging retrieval task that aims to match pedestrians from multiple non-overlapping cameras. In this paper, we introduce a deep multi-instance learning framework to aggregate instance-level images to boost retrieval performance. Considerable annotation inconsistency inevitably happens in many current person re-identification datasets due to unconcerned of annotations or dramatic varieties in surveillance scenarios, thereby leading to model drifting. To alleviate this issue, we formulate the person re-identification problem in a weakly supervised setting, and propose a self-inspired attention model based on Bayesian inference, to adaptively evaluate regional features with their global dependencies across instances, which we refer to as Bayesian Inferred Self-Attentive Aggregation (BISAA). The evaluation mechanism is parameterized by neural networks to provide an insight into the contribution of each instance and semantic human part to set-level labels. Furthermore, to facilitate aggregation across a set of instances, we propose a new collective aggregation function to make the model more robust to outliers, by adjusting the activation threshold, to allow some non-informative instances to be ignored while paying more attention to the discriminative ones. Extensive experiments with ablation analysis show the effectiveness of our method and the proposed method outperforms many related state-of-the-art techniques on four benchmark datasets: PRID2011, iLIDS-VID, Market-1501 and MSMT17.
机译:人重新识别是一个具有挑战性的检索任务,旨在将行人与多个非重叠相机匹配。在本文中,我们介绍了一个深度的多实例学习框架来聚合实例级图像以提高检索性能。由于监视情景中的注释或戏剧性品种,因此,许多当前人员重新识别数据集中不可避免地发生了相当大的注释不一致,从而导致模型漂移。为了缓解这个问题,我们在弱势监督的环境中制定了该人重新识别问题,并提出了基于贝叶斯推论的自我启发的注意模型,以便在我们称之为贝叶斯的情况下,自动评估其全球依赖性的区域特征推断自我周度聚集(Bisaa)。评估机制由神经网络进行参数化,以了解每个实例和语义人体部件对设定级标签的贡献。此外,为了促进跨一组实例的聚合,我们提出了一种新的集体聚合函数,通过调整激活阈值来使模型更加强大地对异常值,以允许一些非信息化的实例忽略,同时更加关注识别歧视那些。通过消融分析的广泛实验表明了我们的方法的有效性和所提出的方法优于四个基准数据集中的许多相关的最先进技术:PRID2011,ILIDS-VID,Market-1501和MSMT17。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号