首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Optimal Discriminative Projection for Sparse Representation-Based Classification via Bilevel Optimization
【24h】

Optimal Discriminative Projection for Sparse Representation-Based Classification via Bilevel Optimization

机译:通过BileVel优化的基于稀疏表示的基于稀疏表示的最佳判别投影

获取原文
获取原文并翻译 | 示例

摘要

Recently, sparse representation-based classification (SRC) has been widely studied and has produced state-of-the-art results in various classification tasks. Learning useful and computationally convenient representations from complex redundant and highly variable visual data is crucial for the success of SRC. However, how to find the best feature representation to work with SRC remains an open question. In this paper, we present a novel discriminative projection learning approach with the objective of seeking a projection matrix such that the learned low-dimensional representation can fit SRC well and that it has well discriminant ability. More specifically, we formulate the learning algorithm as a bilevel optimization problem, where the optimization includes an $ell _{1}$ -norm minimization problem in its constraints. Through the bilevel optimization model, the relationship between sparse representation and the desired feature projection can be explicitly exploited during the learning process. Therefore, SRC can achieve a better performance in the transformed subspace. The optimization model can be solved by using a stochastic gradient ascent algorithm, and the desired gradient is computed using implicit differentiation. Furthermore, our method can be easily extended to learn a dictionary. The extensive experimental results on a series of benchmark databases show that our method outperforms many state-of-the-art algorithms.
机译:最近,基于稀疏的基于代表的分类(SRC)已被广泛研究,并产生了最先进的各种分类任务。学习复杂冗余和高度变量的可视数据的有用和计算方便的表示对于SRC成功至关重要。但是,如何找到与SRC合作的最佳特征表示仍然是一个开放的问题。在本文中,我们提出了一种新的鉴别性投影学习方法,其目的是寻找投影矩阵,使得学习的低维表示可以良好地符合SRC并且具有良好的判别能力。更具体地说,我们将学习算法制定为彼此的彼此优化问题,其中优化包括一个<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ eLl _ {1} $ - 在其约束中最小化问题。通过彼此优化模型,在学习过程中可以明确地利用稀疏表示和期望的特征投影之间的关系。因此,SRC可以在转换的子空间中实现更好的性能。可以通过使用随机梯度上升算法来解决优化模型,并且使用隐式差分计算所需的梯度。此外,我们的方法可以很容易地扩展以学习字典。一系列基准数据库的广泛实验结果表明,我们的方法优于许多最先进的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号