首页> 外文期刊>IEEE Transactions on Image Processing >Optimal Couple Projections for Domain Adaptive Sparse Representation-Based Classification
【24h】

Optimal Couple Projections for Domain Adaptive Sparse Representation-Based Classification

机译:基于领域自适应稀疏表示的分类的最佳夫妇投影

获取原文
获取原文并翻译 | 示例

摘要

In recent years, sparse representation-based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data have a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive SRC (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.
机译:近年来,基于稀疏表示的分类(SRC)是最成功的方法之一,并且已在各种分类任务中显示出令人印象深刻的性能。但是,当训练数据的分布与测试数据的分布不同时,学习的稀疏表示可能不是最佳的,并且SRC的性能将大大降低。为了解决这个问题,在本文中,我们提出了一种针对领域自适应SRC(OCPD-SRC)方法的最佳耦合投影,其中可以同时学习两个域中数据的判别特征,而字典可以简洁地表示训练并在投影空间中测试数据。 OCPD-SRC是根据SRC的决策规则设计的,目的是学习耦合投影矩阵和公共判别词典,以使来自两个域的数据的类间稀疏重构残差最大化,并且类内稀疏重构在投影的低维空间中将数据残差最小化。因此,结果表示可以很好地适合SRC,同时具有更好的判别能力。此外,我们的方法可以轻松地扩展到多个域,并且可以被内核化以处理数据的非线性结构。遵循替代优化方法,可以有效地获得所提出方法的最优解决方案。在一系列基准数据库上的大量实验结果表明,我们的方法优于或等同于许多最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号