首页> 外文期刊>IEEE Transactions on Signal Processing >Class-Discriminative Kernel Sparse Representation-Based Classification Using Multi-Objective Optimization
【24h】

Class-Discriminative Kernel Sparse Representation-Based Classification Using Multi-Objective Optimization

机译:使用多目标优化的基于类别区分性核稀疏表示的分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose class-discriminative kernel sparse representation-based classification (KSRC) using multi-objective optimization (MOO) called KSRC 2.0. In sparse representation-based classification (SRC), both dictionary and residuals (reconstruction errors) play an important role in classifying a sample. Thus, discriminative dictionary and residuals are required to achieve high classification performance. To generate discriminative dictionary and residuals from training data sets, we formulate multi-objective functions via the Fisher discrimination criterion that minimizes distances within and maximizes distances between classes. Then, we solve them by using MOO, which can optimize conflicting objectives at the same time, and obtain component importance factors to make dictionary and residuals class-discriminative. Extensive experiments on publicly available databases demonstrate that the proposed KSRC 2.0 enhances the class separability of KSRC and achieves high classification performance.
机译:在本文中,我们使用称为KSRC 2.0的多目标优化(MOO)提出了基于分类的内核稀疏表示的分类(KSRC)。在基于稀疏表示的分类(SRC)中,字典和残差(重构误差)在对样本进行分类中都起着重要作用。因此,需要判别词典和残差来实现高分类性能。为了从训练数据集中生成判别性字典和残差,我们通过Fisher判别标准制定了多目标函数,该判别准则将类内的距离最小化,并将类之间的距离最大化。然后,我们通过使用MOO来解决它们,该MOO可以同时优化冲突目标,并获得组成重要性因子以使字典和残差分类。在公开数据库上进行的大量实验表明,提出的KSRC 2.0增强了KSRC的类可分离性,并实现了较高的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号