首页> 外文期刊>Mathematical Problems in Engineering >Optimizing Kernel PCA Using Sparse Representation-Based Classifier for MSTAR SAR Image Target Recognition
【24h】

Optimizing Kernel PCA Using Sparse Representation-Based Classifier for MSTAR SAR Image Target Recognition

机译:使用基于稀疏表示的分类器优化内核PCA以进行MSTAR SAR图像目标识别

获取原文
获取原文并翻译 | 示例

摘要

Different kernels cause various class discriminations owing to their different geometrical structures of the data in the feature space. In this paper, a method of kernel optimization by maximizing a measure of class separability in the empirical feature space with sparse representation-based classifier (SRC) is proposed to solve the problem of automatically choosing kernel functions and their parameters in kernel learning. The proposed method first adopts a so-called data-dependent kernel to generate an efficient kernel optimization algorithm. Then, a constrained optimization function using general gradient descent method is created to find combination coefficients varied with the input data. After that, optimized kernel PCA (KOPCA) is obtained via combination coefficients to extract features. Finally, the sparse representation-based classifier is used to perform pattern classification task. Experimental results on MSTAR SAR images show the effectiveness of the proposed method.
机译:不同的内核由于特征空间中数据的几何结构不同而导致各种类别区分。本文提出了一种基于稀疏表示的分类器(SRC),通过最大化经验特征空间中的类可分离性度量来进行内核优化的方法,以解决内核学习中自动选择内核函数及其参数的问题。所提出的方法首先采用所谓的数据相关内核来生成有效的内核优化算法。然后,创建使用通用梯度下降方法的约束优化函数,以找到随输入数据而变化的组合系数。之后,通过组合系数获得优化的内核PCA(KOPCA)以提取特征。最后,基于稀疏表示的分类器用于执行模式分类任务。在MSTAR SAR图像上的实验结果表明了该方法的有效性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第4期|847062.1-847062.10|共10页
  • 作者单位

    School of Software, Dalian University of Technology, Dalian 116620, China;

    School of Software, Dalian University of Technology, Dalian 116620, China;

    School of Civil Engineering, Dalian University of Technology, Dalian 116024, China;

    School of Software, Dalian University of Technology, Dalian 116620, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号