首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Recursive Residual Convolutional Neural Network- Based In-Loop Filtering for Intra Frames
【24h】

Recursive Residual Convolutional Neural Network- Based In-Loop Filtering for Intra Frames

机译:递归剩余卷积神经网络的基于内部帧的内部环路滤波

获取原文
获取原文并翻译 | 示例

摘要

Although the in-loop filtering incorporated in High Efficiency Video Coding (HEVC) standard improves the subjective quality of reconstructed pictures and increases the compression efficiency, it still cannot satisfy the demand for higher quality in the rapid growth of video usage. In this paper, we propose recursive residual convolution neural network (RRCNN)-based in-loop filtering to further improve the quality of reconstructed intra frames while reducing the bitrates. Specifically, RRCNN estimates the residual images between the compressed distorted images and original noncompressed ones, and there are shortcut connections that skip a few stacked layers in the structure of RRCNN to ease the training difficulty. By applying the same set of weights recursively, RRCNN achieves excellent performance while utilizing far fewer parameters. For concise in-loop filtering, we train a single model capable of handling various bitrate settings. Different networks for the filtering of luma and chroma components are designed respectively to better learn the filtering characteristics of different channels. Moreover, to fully adapt the various input videos and boost the performance, a coding tree unit (CTU) control flag is signaled to indicate the filtering method from the sense of rate-distortion optimization (RDO). Extensive experimental results show that our scheme achieves significant bitrate savings compared to HEVC, leading to on average 8.7% BD-rate reduction, with up to a 15.1% BD-rate reduction for luma, and more than 20% BD-rate reductions for chroma on average.
机译:尽管在高效视频编码(HEVC)标准中的环路过滤提高了重建图片的主观质量并提高了压缩效率,但它仍然无法满足视频使用的快速增长中对更高质量的需求。在本文中,我们提出了基于环路滤波的递归残余卷积神经网络(RRCNN),以进一步提高重建内部帧的质量,同时减少比特率。具体而言,RRCNN估计压缩变形图像和原始非压缩的图像之间的残差图像,并且存在在RRCNN结构中跳过几个堆叠层以缓解训练难度的快捷连接。通过递归递归施加相同的重量,RRCNN在利用较少的参数时实现出色的性能。为了简明循环过滤,我们培训一个能够处理各种比特率设置的单一模型。用于滤波的不同网络和色度分量的滤波是为了更好地学习不同通道的滤波特性而设计。此外,为了完全适应各种输入视频并提高性能,发信号通知编码树单元(CTU)控制标志以指示滤波方法从速率失真优化(RDO)。广泛的实验结果表明,与HEVC相比,我们的计划达到了显着的比特率,导致平均降低8.7%的BD速率降低,伐木率高于15.1%的BD速率降低,色度超过20%的BD速率降低一般。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号