首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Aggregation of Rich Depth-Aware Features in a Modified Stacked Generalization Model for Single Image Depth Estimation
【24h】

Aggregation of Rich Depth-Aware Features in a Modified Stacked Generalization Model for Single Image Depth Estimation

机译:用于单幅图像深度估计的修改的堆叠泛化模型中丰富深度感知功能的聚合

获取原文
获取原文并翻译 | 示例

摘要

Estimating scene depth from a single monocular image is a crucial component in computer vision tasks, enabling many further applications such as robot vision, 3-D modeling, and above all, 2-D to 3-D image/video conversion. Since there are an infinite number of possible world scenes, that can produce a unique image, single image depth estimation is a highly challenging task. This paper tackles such an ambiguous problem by using the merits of both global and local information (structures) of a scene. To this end, we formulate single image depth estimation as a regression problem via (on) rich depth related features which describe effective monocular cues. Exploiting the relationship between these image features and depth values is adopted via a learning model which is inspired by modified stacked generalization scheme. The experiments demonstrate competitive results compared with existing data-driven approaches in both quantitative and qualitative analysis with a remarkably simpler approach than previous works.
机译:估计来自单眼图像的场景深度是计算机视觉任务中的一个重要组成部分,使许多进一步的应用程序如机器人视觉,3-D型,以及最重要的,2-D到3-D图像/视频转换。由于存在无限数量的可能的世界场景,可以产生唯一的图像,单个图像深度估计是一个高度具有挑战性的任务。本文通过使用场景的全局和本地信息(结构)的优点来解决这种模糊的问题。为此,我们将单个图像深度估计作为回归问题(ON)描述了描述有效单手抄本的丰富的深度相关特征。利用这些图像特征和深度值之间的关系通过由修改的堆叠泛化方案启发的学习模型来采用。实验表明,与定量和定性分析中的现有数据驱动方法相比,竞争结果具有比以前的作品相当更简单的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号