首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Nonconvex Truncated Nuclear Norm Minimization Based on Adaptive Bisection Method
【24h】

Nonconvex Truncated Nuclear Norm Minimization Based on Adaptive Bisection Method

机译:基于自适应二等分法的非凸截断核范数最小化

获取原文
获取原文并翻译 | 示例

摘要

The explosive growth in high-dimensional visual data requires effective regularization techniques to utilize the underlying low-dimensional structure. We consider low-rank matrix recovery, and many existing approaches are based on the nuclear norm regularization. Recently, truncated nuclear norm (TNNR) has been proposed to achieve a better approximation to the rank function than that of the traditional nuclear norm. TNNR was defined by the nuclear norm by subtracting the sum of the largest $r$ singular values. However, the estimation of $r$ is not trivial. In addition, the original algorithm based on TNNR only considers the matrix completion cases and requires double loops, which is not quite computationally efficient. Correspondingly, in this paper, we propose the adaptive bisection method to adaptively estimate $r$ , which can efficiently reduce the cost of computation. Moreover, to further accelerate computing, we apply iteratively reweighted nuclear norm to solve the nonconvex TNNR directly, and the convergence can also be guaranteed. Finally, we extend the applications of TNNR from the matrix completion problems to the general low-rank matrix recovery. Extensive experiments validate the superiority of the proposed algorithm over the state-of the-art methods.
机译:高维视觉数据的爆炸性增长需要有效的正则化技术来利用底层的低维结构。我们考虑低阶矩阵恢复,许多现有方法都基于核规范正则化。近来,已经提出了截断核规范(TNNR)来实现比传统核规范更好的秩函数近似​​。 TNNR由核规范定义,减去最大$ r $奇异值之和。但是,$ r $的估算并非无关紧要。另外,基于TNNR的原始算法仅考虑矩阵完成情况,并且需要双循环,这在计算上不太有效。相应地,本文提出了一种自适应二等分方法来自适应估计$ r $,可以有效地降低计算成本。此外,为了进一步加速计算,我们采用迭代加权核规范直接求解非凸TNNR,并且也可以保证收敛。最后,我们将TNNR的应用范围从矩阵完成问题扩展到一般的低阶矩阵恢复。大量的实验证明了该算法优于最新方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号