首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Beyond Visual Retargeting: A Feature Retargeting Approach for Visual Recognition and Its Applications
【24h】

Beyond Visual Retargeting: A Feature Retargeting Approach for Visual Recognition and Its Applications

机译:超越视觉重新定向:一种用于视觉识别的特征重新定向方法及其应用

获取原文
获取原文并翻译 | 示例

摘要

The popularity of mobile applications has greatly enriched and facilitated our lives. However, the rapid increase of digital images and the problem of narrow bandwidth of the wireless network call for an appropriate approach to reduce the amount of data transmitted over the wireless network (i.e., low bit-rate transmission) while ensuring high recognition accuracy at the cloud. We propose a simple and effective feature retargeting (FR) approach for retargeting an image while preserving the representative local features (e.g., SIFT, SURF, and BRIEF) in the image. Our feature retargeting approach aims at low bit-rate visual recognition instead of high-quality visual perception that visual retargeting methods dedicate to. Our algorithm consists of two key novelties: estimating feature saliency and retargeting image: Estimating feature saliency focuses on predicting the relative importance of different features in an image by analyzing uniqueness in a specific context; Retargeting image aims at finding the optimal resolution for the retargeted image to maximize feature-saliency energy. We evaluate the proposed approach for two different applications in three large data sets and observe that our FR approach consistently outperforms state-of-the-art retargeting algorithms, resulting in both higher precision and lower bit-rates. We also demonstrate that even when the resolution of source image is reduced greatly, e.g., 1/7 original size, our algorithm produces superior results as compared with other approaches.
机译:移动应用程序的普及极大地丰富了我们的生活,并为我们的生活提供了便利。然而,数字图像的快速增长和无线网络带宽窄的问题要求一种适当的方法来减少通过无线网络传输的数据量(即,低比特率传输),同时确保高识别率。云。我们提出了一种简单有效的特征重定目标(FR)方法来重定图像的位置,同时保留图像中的代表性局部特征(例如SIFT,SURF和Brief)。我们的功能重定位方法旨在实现低比特率的视觉识别,而不是视觉重定位方法专用于的高质量视觉感知。我们的算法包括两个关键的新颖性:估计特征显着性和重新定位图像:估计特征显着性着重于通过分析特定上下文中的唯一性来预测图像中不同特征的相对重要性;重定目标图像旨在为重定目标图像找到最佳分辨率,以使特征显着性能量最大化。我们在三个大数据集中针对两种不同的应用评估了所提出的方法,并观察到我们的FR方法始终优于最新的重定目标算法,从而实现了更高的精度和更低的比特率。我们还证明了,即使源图像的分辨率大大降低(例如原始大小的1/7),我们的算法也比其他方法产生了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号