首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >Maximum and minimum tracking performances of adaptive filteringalgorithms over target weight cross correlations
【24h】

Maximum and minimum tracking performances of adaptive filteringalgorithms over target weight cross correlations

机译:目标权重互相关上的自适应滤波算法的最大和最小跟踪性能

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with studying the dependence of thentracking performance of the LMS, RLS, sign, signed regressor, andnsign-sign algorithms on the cross correlations among the fluctuations ofnindividual target weights. In practical applications, these crossncorrelations are usually unknown. Therefore, it is useful for designnpurposes to find the extreme values of the performance measures over allnpossible cross correlations. The paper derives, for each one of thenabove five algorithms, the conditions of target weight crossncorrelations that maximize and the ones that minimize the steady-statenexcess mean-square error Ξ and the steady-state mean-square weightnmisalignment Η. The relationship between the step sizesnΜΞ and ΜΗ that minimize Ξ andnΗ, respectively, for given target weight cross correlations isnstudied. Maxima and minima of ΜΞ and ΜΗn over all target weight cross correlations are found. Thennecessary and sufficient condition of equality of ΜΞnand ΜΗ for all target weight cross correlations isnderived. A rule that maps the tracking performance measures of the LMSnalgorithm to the ones of the RLS algorithm is found. The necessary andnsufficient condition of equality of the tracking capabilities of the RLSnand LMS algorithms for all target weight cross correlations is derived.nA measure of the degree of ambiguity of the tracking performance, due tonignorance of target weight cross correlations, is defined. It is foundnthat all of the above algorithms share the same degree of ambiguity, andnthat this degree increases with the eigenvalue spread of the inputncovariance matrix
机译:本文关注的是研究LMS,RLS,正负号,正负号回归和正负号算法的跟踪性能对单个目标权重波动之间的互相关性的依赖性。在实际应用中,这些互相关通常是未知的。因此,对于设计目的而言,找到所有可能的互相关上的性能度量的极值是有用的。本文针对以上五种算法中的每一种,推导了最大化目标权重互相关的条件和最小化稳态均方误差Ξ和稳态均方权重不对准H的条件。对于给定的目标重量互相关,研究了分别最小化Ξ和nH的步长ηm和MH之间的关系。发现在所有目标重量互相关上的M 1和M Hn的最大值和最小值。然后推导了对于所有目标权重互相关的M nn和M H相等的充要条件。找到了将LMSnalgorithm的跟踪性能度量映射到RLS算法的规则的规则。推导了RLSn和LMS算法对所有目标权重互相关性具有相等的跟踪能力的充要条件。定义了由于目标权重互相关性过高而造成的跟踪性能歧义程度的度量。发现上述所有算法共享相同的歧义度,并且该度随着输入协方差矩阵的特征值扩展而增加

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号