首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >Point-to-point connectivity between neuromorphic chips usingaddress events
【24h】

Point-to-point connectivity between neuromorphic chips usingaddress events

机译:使用地址事件的神经形态芯片之间的点对点连接

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses connectivity between neuromorphic chips,nwhich use the timing of fixed-height fixed-width pulses to encodeninformation. Address-events (log2(N)-bit packets thatnuniquely identify one of N neurons) are used to transmit these pulses innreal time on a random-access time-multiplexed communication channel.nActivity is assumed to consist of neuronal ensembles-spikes clustered innspace and in time. This paper quantifies tradeoffs faced in allocatingnbandwidth, granting access, and queuing, as well as throughputnrequirements, and concludes that an arbitered channel design is the bestnchoice. The arbitered channel is implemented with a formal designnmethodology for asynchronous digital VLSI CMOS systems, afternintroducing the reader to this top-down synthesis technique. Followingnthe evolution of three generations of designs, it is shown how thenoverhead of arbitrating, and encoding and decoding, can be reduced innarea (from N to √N) by organizing neurons into rows and columns,nand reduced in time (from log2(N) to 2) by exploitingnlocality in the arbiter tree and in the row-column architecture, andnclustered activity. Throughput is boosted by pipelining and by readingnspikes in parallel. Simple techniques that reduce crosstalk in thesenmixed analog-digital systems are described
机译:本文讨论了神经形态芯片之间的连通性,它们使用固定高度固定宽度脉冲的时序来编码信息。地址事件(唯一标识N个神经元之一的log2(N)位数据包)用于在随机访问的时分多路通信信道上实时传输这些脉冲。nActivity假定由神经元合奏尖峰簇集在空间内,并且及时。本文量化了分配带宽,授予访问权和排队以及吞吐量需求方面所面临的折衷,并得出结论认为,仲裁通道设计是最佳选择。在向读者介绍这种自上而下的综合技术之后,该仲裁通道是通过用于异步数字VLSI CMOS系统的正式设计方法来实现的。跟随三代设计的演变,显示了如何通过将神经元组织成行和列,并在时间上减少(从log2(N)来减少仲裁,编码和解码的开销(从N到√N)。到2)通过利用仲裁树和行-列架构中的局部性,并包含活动。通过流水线和并行读取峰值来提高吞吐量。描述了减少混音模数系统中串扰的简单技术

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号