首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >A 0.52 μW, 38 nV/√Hz Chopper Amplifier With a Low-Noise DC Servo Loop, an Embedded Ripple Reduction Loop, and a Squeezed Inverter Stage
【24h】

A 0.52 μW, 38 nV/√Hz Chopper Amplifier With a Low-Noise DC Servo Loop, an Embedded Ripple Reduction Loop, and a Squeezed Inverter Stage

机译:具有低噪声DC伺服环路,嵌入式纹波减速环和挤压逆变器级,具有0.52μW,38个NV /√Hz斩波放大器,以及挤压逆变器级

获取原文
获取原文并翻译 | 示例
           

摘要

To realize an ultralow-power, low-noise amplifier for bio-potential recording, we investigate three design techniques. The first technique uses a noise-efficient squeezed inverter (SQI) stage biased at the supply of the 2V(DSAT) saturation limit. The challenge of interfacing the SQI stage with such a low supply is addressed by proposing a new capacitively-coupled chopper instrumentation amplifier (CCIA) with a low-noise DC servo loop (L-DSL) and an embedded ripple reduction loop (E-RRL). The second technique is reducing the high noise contribution of the conventional DSL. The proposed L-DSL reduces the input-referred noise (IRN) by removing the charge dividing effect. The proposed E-RRL inserted inside the gain stage cancels the offset and achieves a ripple suppression without loading the output. The CCIA is implemented using a 0.18 mu m CMOS process. The measured results show that the L-DSL successfully creates a sub-Hz high-pass corner needed to block the electrode offset. The E-RRL achieves a ripple suppression of 39 dB. The CCIA achieves 32 nV/root Hz noise density, which is slightly increased to 38 nV/root Hz when the L-DSL is enabled. The integrated noise over 800 Hz bandwidth is 0.9 and 1.1 mu V-rms without and with the L-DSL, respectively. The mid-band gain of 39.6 dB is achieved by consuming 0.52 mu W. These results correspond to a favorable noise efficiency factor (NEF) of 2.1 and a power efficiency factor (PEF) of 1.2.
机译:为了实现EltraLow-power,低噪声放大器进行生物电位记录,我们调查了三种设计技术。第一技术使用噪声有效的挤压逆变器(SQI)阶段偏置在2V(DSAT)饱和极限的供电。通过提出具有低噪声DC伺服环路(L-DSL)和嵌入式纹波减速环(E-RRL)的新电容耦合的斩波器仪表放大器(CCIA)来解决与这种低供应具有这种低供应的SQI阶段的挑战(CCIA) )。第二种技术正在降低传统DSL的高噪声贡献。所提出的L-DSL通过去除电荷分割效果来减少输入引用的噪声(IRN)。插入在增益阶段内的建议的E-RRL取消了偏移,并在不加载输出的情况下实现纹波抑制。使用0.18 mu m c cmos工艺实施CCIA。测量结果表明,L-DSL成功地创建了阻挡电极偏移所需的子Hz高通角。 E-RRL达到39 dB的纹波抑制。 CCIA在启用L-DSL时达到32个NV / Root Hz噪声密度,略微增加到38nV / Root Hz。超过800Hz带宽的集成噪声分别为0.9和1.1μV-rms,没有和L-DSL。通过消耗0.52μW,实现39.6dB的中频增益。这些结果对应于2.1的有利噪声效率因子(NEF)和1.2的功率效率因子(PEF)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号