首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >MACSen: A Processing-In-Sensor Architecture Integrating MAC Operations Into Image Sensor for Ultra-Low-Power BNN-Based Intelligent Visual Perception
【24h】

MACSen: A Processing-In-Sensor Architecture Integrating MAC Operations Into Image Sensor for Ultra-Low-Power BNN-Based Intelligent Visual Perception

机译:MACSEN:将MAC操作集成到图像传感器中的传感器架构,以实现基于超低功耗的基于BNN的智能视觉感知

获取原文
获取原文并翻译 | 示例

摘要

Current BNN-based visual system wastes lots of energy in data conversion and movement, hindering its deployment on battery-powered devices. This brief proposes MACSen, an ultra-low-power processing-in-sensor (PIS) architecture which integrates sensing with computing and directly outputs the computation results. The multiply-and-accumulation (MAC) operation in BNN is fused with the Correlated Double Sampling (CDS) procedure together to save data conversion power. A 4 x 4 MACSen prototype of 180nm process was fabricated for demonstration, and it achieves the frame rate of 1000fps and the energy efficiency of 1.32TOP/s/W in computation mode. Furthermore, the system demonstration on MNIST dataset classification task shows that the hardware BNN implementation integrating MACSen incurs no accuracy degradation and gains 61% energy saving compared with state-of-the-art work.
机译:基于BNN的基于BNN的视觉系统在数据转换和移动中浪费了大量能量,阻碍了其在电池供电设备上的部署。本简要建议MACSEN,超低功耗加工 - 传感器(PIS)架构,其集成了与计算的感应,并直接输出计算结果。 BNN中的乘法和累积(MAC)操作与相关的双采样(CD)过程一起融合,以节省数据转换功率。制造了4×4 MAMSEN原型为180nm工艺进行演示,并且在计算模式下实现了1000fps的帧速率和1.32top / s / w的能量效率。此外,Mnist DataSet分类任务的系统演示表明,与最先进的工作相比,硬件BNN实现集成了MACSEN没有准确性降级和增益61%的节能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号