首页> 外文期刊>Bulletin of the Brazilian Mathematical Society, New Series >The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences
【24h】

The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences

机译:关于k广义斐波那契数列交集的猜想的证明

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

For k ≥ 2, the k-generalized Fibonacci sequence (F n (k) ) n is defined by the initial values 0, 0, …, 0,1 (k terms) and such that each term afterwards is the sum of the k preceding terms. In 2005, Noe and Post conjectured that the only solutions of Diophantine equation F m (k) = F n (ℓ) , with ℓ > k > 1, n > ℓ + 1, m > k + 1 are $$(m,n,ell ,k) = (7,6,3,2)and(12,11,7,3)$$. In this paper, we confirm this conjecture. Keywords k-generalized Fibonacci numbers linear forms in logarithms intersection Mathematical subject classification 11B39 11J86 Supported by FAP-DF, FEMAT and CNPq-Brazil.
机译:对于k≥2,k广义斐波那契数列(F n(k))n由初始值0、0,…,0.1(k个项)定义,并且之后的每个项都是k的总和之前的条款。在2005年,Noe和Post猜想Diophantine方程F m(k)= F n(ℓ)的唯一解是$$(m,k> 1,n>ℓ+ 1,m> k +1)。 n,ell,k)=(7,6,3,2)和(12,11,7,3)$$。在本文中,我们证实了这一推测。关键词k-广义斐波那契数对数交点处的线性形式数学主题分类11B39 11J86在FAP-DF,FEMAT和CNPq-Brazil的支持下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号