首页> 外文期刊>Building and Environment >A Gaussian process emulator approach for rapid contaminant characterization with an integrated multizone-CFD model
【24h】

A Gaussian process emulator approach for rapid contaminant characterization with an integrated multizone-CFD model

机译:高斯过程仿真器方法,用于集成多区域CFD模型的快速污染物表征

获取原文
获取原文并翻译 | 示例

摘要

This paper explores a Gaussian process emulator based approach tor rapid Bayesian inference of contaminant source location and characteristics in an indoor environment In the pre-event detection stage, the proposed approach represents transient contaminant fate and transport as a random function with multivariate Gaussian process prior. Hyper-parameters of the Gaussian process prior are inferred using a set of contaminant fate and transport simulation runs obtained at predefined source locations and characteristics. This paper uses an integrated multizone-CFD model to simulate contaminant fate and transport. Mean of the Gaussian process, conditional on the inferred hyper-parameters, is used as a computationally efficient statistical emulator of the multizone-CFD simulator. In the post eventdetection stage, the Bayesian framework is used to infer the source location and characteristics using the contaminant concentration data obtained through a sensor network. The Gaussian process emulator of the contaminant fate and transport is used for Markov Chain Monte Carlo sampling to efficiently explore the posterior distribution of source location and characteristics. Efficacy of the proposed method is demonstrated for a hypothetical contaminant release through multiple sources in a single storey seven room building. The method is found to infer location and characteristics of the multiple sources accurately. The posterior distribution obtained using the proposed method is found to agree closely with the posterior distribution obtained by directly coupling the multizone-CFD simulator with the Markov Chain Monte Carlo sampling.
机译:本文探索了一种基于高斯过程仿真器的方法,以在室内环境中快速贝叶斯推断污染物源的位置和特征。在事前检测阶段,该方法将瞬态污染物的命运和迁移表示为具有随机变量的高斯过程。高斯过程先验的超参数是通过使用一组污染物的命运和在预定义的源位置和特征处获得的传输模拟运行来推断的。本文使用集成的多区域CFD模型来模拟污染物的命运和迁移。高斯过程的均值,以推断的超参数为条件,被用作多区域CFD仿真器的计算有效的统计仿真器。在事件后检测阶段,贝叶斯框架用于使用通过传感器网络获得的污染物浓度数据来推断污染源的位置和特征。马尔科夫链蒙特卡洛采样使用污染物命运和迁移的高斯过程仿真器来有效地探究源位置和特征的后验分布。证明了所提出方法的有效性,该假设方法是通过假设在一个七层高的单层建筑中通过多种来源释放假想的污染物。发现该方法可以准确推断多个源的位置和特征。发现使用所提出的方法获得的后验分布与通过将多区域CFD仿真器与马尔可夫链蒙特卡洛采样直接耦合获得的后验分布非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号