首页> 外文期刊>Boundary-Layer Meteorology >Interpolation between Businger–Dyer Formulae and Free Convection Forms: A Revised Approach
【24h】

Interpolation between Businger–Dyer Formulae and Free Convection Forms: A Revised Approach

机译:Businger-Dyer公式与自由对流形式之间的插值:一种修正的方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, profile functions for flux calculations during unstable conditions are proposed and examined. These functions are based on a direct interpolation for the dimensionless wind speed and temperature gradients between the standard Businger–Dyer formulae, $phi_{{rm K}u} (zeta) = (1 - gamma _{u} zeta)^{-1/4}$ , $phi_{{rm K}t} (zeta) = (1 - gamma _{t} zeta )^{-1/2}$ , and free convection forms, $phi _{{rm C}u,t} (zeta) = (1 - alpha _{{rm C}u,t} zeta )^{-1/3}$ , $zeta$ being the Monin–Obukhov stability parameter. A previously presented interpolation between the corresponding profile relationships, in attempting to provide a general relationship for the whole unstable regime, leads to serious restrictions for the values of $alpha _{{rm C}u ,t}$ in the free convection forms. These restrictions rendered available experimental data almost inapplicable, since the behaviour of the formulae in the near-neutral range controls the values of those parameters. The proposed interpolation provides functions that, firstly, fit the standard Businger–Dyer forms for near-neutral conditions and, secondly, satisfy the asymptotic behaviour as $zeta rightarrow -infty$ , permitting wider ranges of possible $alpha _{{rm Cu},t}$ values. This step is very important, taking into account the large spread of the experimental data. Thus, as further and more accurate observations at strong instability become available, this approach could prove very efficient in fitting these data while retaining correct near-neutral behaviour.
机译:在这项研究中,提出并检验了用于不稳定条件下通量计算的轮廓函数。这些函数基于标准Businger-Dyer公式$ phi _ {{{rm K} u}(zeta)=(1--γ_ {u} zeta)^ {- 1/4} $,$ phi _ {{rm K} t}(zeta)=(1-γ_ {t} zeta)^ {-1/2} $和自由对流形式$ phi _ {{rm C } u,t}(zeta)=(1-α_ {{rm C} u,t} zeta)^ {-1/3} $,$ zeta $是Monin–Obukhov稳定性参数。为了提供整个不稳定状态的一般关系,先前介绍的相应轮廓关系之间的插值导致对自由对流形式的$ alpha _ {{rm C} u,t} $值的严格限制。这些限制使得可用的实验数据几乎不适用,因为公式在接近中性范围内的行为控制着这些参数的值。拟议的插值提供的功能是,首先,适合于接近中性条件的标准Businger-Dyer形式;其次,满足$ zeta rightarrow-infty $的渐近行为,从而允许更大范围的可能的$ alpha _ {{rm Cu} ,t} $值。考虑到实验数据的广泛传播,这一步骤非常重要。因此,随着在强不稳定性方面获得更多,更准确的观测结果,该方法可能在拟合这些数据的同时保持正确的近中性行为时非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号