首页> 外文期刊>BIT numerical mathematics >Linear gradient structures and discrete gradient methods for conservative/dissipative differential-algebraic equations
【24h】

Linear gradient structures and discrete gradient methods for conservative/dissipative differential-algebraic equations

机译:保守/耗散微分代数方程的线性梯度结构和离散梯度方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the use of discrete gradients is considered for differential-algebraic equations (DAEs) with a conservation/dissipation law. As one of the most popular numerical methods for conservative/dissipative ordinary differential equations, the framework of the discrete gradient method has been intensively developed over recent decades. Although discrete gradients have been applied to several specific DAEs, no unified framework has yet been constructed. In this paper, the author moves toward the establishment of such a framework, and introduces concepts including an appropriate linear gradient structure for DAEs. Then, it is revealed that the simple use of discrete gradients does not imply the discrete conservation/dissipation laws. Fortunately, however, for the case of index-1 DAEs, an appropriate reformulation and a new discrete gradient enable us to successfully construct a novel scheme, which satisfies both of the discrete conservation/dissipation law and the constraint. This first attempt may provide an indispensable basis for constructing a unified framework of discrete gradient methods for DAEs.
机译:在本文中,对于具有守恒/耗散定律的微分代数方程(DAE),考虑使用离散梯度。作为用于保守/耗散常微分方程的最受欢迎的数值方法之一,近几十年来,离散梯度法的框架得到了广泛的发展。尽管离散梯度已应用于几种特定的DAE,但尚未构建统一的框架。在本文中,作者着手建立这种框架,并介绍了包括适用于DAE的线性梯度结构的概念。然后,揭示了离散梯度的简单使用并不意味着离散的守恒/耗散定律。但是,幸运的是,对于索引为1的DAE,适当的重新公式化和新的离散梯度使我们能够成功地构造出既满足离散守恒/耗散定律又满足约束条件的新方案。首次尝试可以为构建DAE的离散梯度方法的统一框架提供必不可少的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号