首页> 外文期刊>BIT numerical mathematics >Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions
【24h】

Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions

机译:Stieltjes矩阵函数的Krylov子空间逼近的误差界和估计

获取原文
获取原文并翻译 | 示例

摘要

When using the Lanczos method to approximate , the action of a matrix function on a vector, there is, in contrast to the solution of linear systems, no straightforward way to measure or estimate the error of the current iterate. Therefore, to be able to decide whether the desired accuracy has been reached, several different estimates and bounds for the error have been suggested, all of them specific to certain classes of functions. In this paper, we add to these results by developing a technique to compute error bounds for Stieltjes functions, using a recently suggested integral representation of the error, and we show how these bounds can be computed essentially for free, i.e., with cost independent of the iteration number and the dimension of the matrix A.
机译:当使用Lanczos方法逼近矩阵函数对矢量的作用时,与线性系统的解决方案相比,没有直接的方法来测量或估计当前迭代的误差。因此,为了能够确定是否已达到所需的精度,建议了几种不同的误差估计和界限,所有这些估计和界限都特定于某些功能类别。在本文中,我们通过使用最近建议的误差积分表示法开发一种计算Stieltjes函数的误差范围的技术来增加这些结果,并说明如何基本上免费地计算这些范围,即成本独立于矩阵A的迭代次数和维数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号