首页> 外文期刊>BIT numerical mathematics >Estimating the error of Gaussian quadratures with simple and multiple nodes by using their extensions with multiple nodes
【24h】

Estimating the error of Gaussian quadratures with simple and multiple nodes by using their extensions with multiple nodes

机译:通过使用具有多个节点的扩展来估计具有简单和多个节点的高斯积分的误差

获取原文
获取原文并翻译 | 示例

摘要

The estimation of the error in a quadrature formula is an important problem. A simple and effective procedure for estimating the error of Gaussian quadrature formulas using their extensions with multiple nodes will be presented. Our method works for estimating the error of any interpolatory quadrature formula with simple or multiple nodes. We concentrate the most of our attention to the estimation of the error of standard Gauss quadratures, as the most known and popular ones. In that sense we offer an adequate alternative to Gauss-Kronrod quadratures, which have been intensively investigated in the last five decades, both from the theoretical and computational point of view. We found and a few cases of optimal, i.e., Kronrod extensions with multiple nodes for some Gauss quadrature formulas; we are not aware of any results of this kind in the mathematical literature. Numerical results are presented, in order to demonstrate the efficiency of the proposed method.
机译:正交公式中的误差估计是一个重要的问题。将介绍一个简单有效的方法,用于使用它们在多个节点处的扩展来估计高斯正交公式的误差。我们的方法适用于估计具有简单或多个节点的任何插值正交公式的误差。我们将最主要的精力集中在对标准高斯正交误差的估计上,这是最著名和最受欢迎的误差。从这个意义上讲,我们提供了高斯-克朗罗德(Gauss-Kronrod)正交的适当替代方案,在过去的五十年中,无论是从理论还是从计算的角度,都对高斯-克朗罗德正交进行了深入研究。我们发现了一些最优的情况,即对于某些高斯正交公式具有多个节点的Kronrod扩展;我们在数学文献中还没有发现这种结果。数值结果被提出,以证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号