首页> 外文学位 >Methodical Design Approaches to Multiple Node Collection Robustness for Flip-Flop Soft Error Mitigation.
【24h】

Methodical Design Approaches to Multiple Node Collection Robustness for Flip-Flop Soft Error Mitigation.

机译:用于减轻触发器软错误的多节点集合鲁棒性的方法设计方法。

获取原文
获取原文并翻译 | 示例

摘要

The space environment comprises cosmic ray particles, heavy ions and high energy electrons and protons. Microelectronic circuits used in space applications such as satellites and space stations are prone to upsets induced by these particles. With transistor dimensions shrinking due to continued scaling, terrestrial integrated circuits are also increasingly susceptible to radiation upsets. Hence radiation hardening is a requirement for microelectronic circuits used in both space and terrestrial applications.;This work begins by exploring the different radiation hardened flip-flops that have been proposed in the literature and classifies them based on the different hardening techniques.;A reduced power delay element for the temporal hardening of sequential digital circuits is presented. The delay element single event transient tolerance is demonstrated by simulations using it in a radiation hardened by design master slave flip-flop (FF). Using the proposed delay element saves up to 25% total FF power at 50% activity factor. The delay element is used in the implementation of an 8-bit, 8051 designed in the TSMC 130 nm bulk CMOS.;A single impinging ionizing radiation particle is increasingly likely to upset multiple circuit nodes and produce logic transients that contribute to the soft error rate in most modern scaled process technologies. The design of flip-flops is made more difficult with increasing multi-node charge collection, which requires that charge storage and other sensitive nodes be separated so that one impinging radiation particle does not affect redundant nodes simultaneously. We describe a correct-by-construction design methodology to determine a-priori which hardened FF nodes must be separated, as well as a general interleaving scheme to achieve this separation. We apply the methodology to radiation hardened flip-flops and demonstrate optimal circuit physical organization for protection against multi-node charge collection.;Finally, the methodology is utilized to provide critical node separation for a new hardened flip-flop design that reduces the power and area by 31% and 35% respectively compared to a temporal FF with similar hardness. The hardness is verified and compared to other published designs via the proposed systematic simulation approach that comprehends multiple node charge collection and tests resiliency to upsets at all internal and input nodes. Comparison of the hardness, as measured by estimated upset cross-section, is made to other published designs. Additionally, the importance of specific circuit design aspects to achieving hardness is shown.
机译:空间环境包括宇宙射线粒子,重离子以及高能电子和质子。在卫星和空间站等太空应用中使用的微电子电路容易受到这些粒子的干扰。由于晶体管的尺寸由于连续缩放而缩小,因此地面集成电路也越来越容易受到辐射干扰的影响。因此,辐射硬化是空间和地面应用中使用的微电子电路的必要条件。这项工作始于研究文献中提出的不同辐射硬化触发器,并根据不同的硬化技术对其进行分类。提出了用于时序数字电路的时间硬化的功率延迟元件。通过在设计主从触发器(FF)硬化的辐射中使用它来仿真,证明了延迟元素单事件瞬态容差。使用建议的延迟元件可以在50%的活动因子下节省多达25%的FF总功率。延迟元件用于在TSMC 130 nm块状CMOS中设计的8位8051的实现中;单个撞击电离辐射粒子越来越有可能使多个电路节点不安定,并产生有助于软错误率的逻辑瞬态在大多数现代规模化工艺技术中。随着多节点电荷收集的增加,触发器的设计变得更加困难,这要求电荷存储和其他敏感节点分开,这样一个撞击的辐射粒子不会同时影响冗余节点。我们描述了一种通过构造正确的设计方法来确定必须分离的硬化FF节点的先验知识,以及实现这种分离的通用交织方案。我们将该方法应用于辐射硬化触发器,并展示了针对多节点电荷收集提供保护的最佳电路物理组织。最后,该方法用于为新的硬化触发器设计提供关键节点分离,从而降低了功耗和功耗。与具有类似硬度的暂时性FF相比,面积分别减少了31%和35%。通过提议的系统仿真方法,可以验证硬度并将其与其他已发布的设计进行比较,该方法包括多个节点电荷收集并测试所有内部节点和输入节点的不稳定性。通过估计的不正常横截面测量的硬度与其他已发布的设计进行了比较。此外,还显示了特定电路设计方面对实现硬度的重要性。

著录项

  • 作者

    Shambhulingaiah, Sandeep.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号