首页> 外文期刊>Biomedical signal processing and control >Sentiment analysis in non-fixed length audios using a Fully Convolutional Neural Network
【24h】

Sentiment analysis in non-fixed length audios using a Fully Convolutional Neural Network

机译:使用完全卷积神经网络的非固定长度Audios的情感分析

获取原文
获取原文并翻译 | 示例

摘要

In this work, a sentiment analysis method that is capable of accepting audio of any length, without being fixed a priori, is proposed. Mel spectrogram and Mel Frequency Cepstral Coefficients are used as audio description methods and a Fully Convolutional Neural Network architecture is proposed as a classifier. The results have been validated using three well known datasets: EMODB, RAVDESS and TESS. The results obtained were promising, outperforming the state-of-the-art methods. Also, thanks to the fact that the proposed method admits audios of any size, it allows a sentiment analysis to be made in near real time, which is very interesting for a wide range of fields such as call centers, medical consultations or financial brokers.
机译:在这项工作中,提出了一种能够接受任何长度的音频而不固定先验的情绪分析方法。 MEL谱图和MEL频率谱系数用作音频描述方法,并且提出了完全卷积神经网络架构作为分类器。 使用三个众所周知的数据集进行了验证了结果:Emodb,Ravdess和Tess。 获得的结果是有前途的,优于最先进的方法。 此外,由于拟议的方法承认任何规模的大声音,它允许在近实时进行情感分析,这对于各种领域,例如呼叫中心,医疗咨询或金融经纪人而言非常有趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号