首页> 外文期刊>Computational Intelligence >Sentiment analysis of tweets using a unified convolutional neural network-long short-term memory network model
【24h】

Sentiment analysis of tweets using a unified convolutional neural network-long short-term memory network model

机译:使用统一卷积神经网络长短期内存网络模型的推文的情感分析

获取原文
获取原文并翻译 | 示例

摘要

Sentiment analysis focuses on identifying and classifying the sentiments expressed in text messages and reviews. Social networks like Twitter, Facebook, and Instagram generate heaps of data filled with sentiments, and the analysis of such data is very fruitful when trying to improve the quality of both products and services alike. Classic machine learning techniques have a limited capability to efficiently analyze such large amounts of data and produce precise results; they are thus supported by deep learning models to achieve higher accuracy. This study proposes a combination of convolutional neural network and long short-term memory (CNN-LSTM) deep network for performing sentiment analysis on Twitter datasets. The performance of the proposed model is analyzed with machine learning classifiers, including the support vector classifier, random forest (RF), stochastic gradient descent (SGD), logistic regression, a voting classifier (VC) of RF and SGD, and state-of-the-art classifier models. Furthermore, two feature extraction methods (term frequency-inverse document frequency and word2vec) are also investigated to determine their impact on prediction accuracy. Three datasets (US airline sentiments, women's e-commerce clothing reviews, and hate speech) are utilized to evaluate the performance of the proposed model. Experiment results demonstrate that the CNN-LSTM achieves higher accuracy than those of other classifiers.
机译:情绪分析侧重于识别和分类文本消息中表达的情绪。像Twitter,Facebook和Instagram这样的社交网络生成充满情绪的大量数据,并且在尝试提高产品和服务的质量时,这些数据的分析非常丰硕。经典机器学习技术具有有限的能力,有效地分析了这种大量数据并产生了精确的结果;因此,深入学习模型支持它们以实现更高的准确性。本研究提出了卷积神经网络和长短期存储器(CNN-LSTM)深网络的组合,用于对Twitter数据集进行情感分析。用机器学习分类器分析所提出的模型的性能,包括支持向量分类器,随机林(RF),随机梯度下降(SGD),Logistic回归,RF和SGD的投票分类器(VC),以及状态 - 艺术分类器模型。此外,还研究了两个特征提取方法(术语频率逆文档频率和WORD2VEC)以确定它们对预测精度的影响。三个数据集(美国航空公司情绪,妇女电子商务服装评论和仇恨演讲)用于评估拟议模型的性能。实验结果表明,CNN-LSTM比其他分类器的准确性更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号