首页> 外文期刊>Biomedical signal processing and control >Electroencephalography-based motor imagery classification using temporal convolutional network fusion
【24h】

Electroencephalography-based motor imagery classification using temporal convolutional network fusion

机译:基于型电气摄影的电动机图像使用时间卷积网络融合进行分类

获取原文
获取原文并翻译 | 示例

摘要

Motor imagery electroencephalography (MI-EEG) signals are generated when a person imagines a task without actually performing it. In recent studies, MI-EEG has been used in the rehabilitation process of paralyzed patients, therefore, decoding MI-EEG signals accurately is an important task, and it is difficult task due to the low signal-to-noise ratio and the variation of brain waves between subjects. Deep learning techniques such as the convolution neural network (CNN) have shown an impact in extracting meaningful features to improve the accuracy of classification. In this paper, we propose TCNet-Fusion, a fixed hyperparameter-based CNN model that utilizes multiple techniques, such as temporal convolutional networks (TCNs), separable convolution, depthwise convolution, and the fusion of layers. This model outperforms other fixed hyperparameter-based CNN models while remaining similar to those that utilize variable hyperparameter networks, which are networks that change their hyperparameters based on each subject, resulting in higher accuracy than fixed networks. It also uses less memory than variable networks. The EEG signal undergoes two successive 1D convolutions, first along with the time domain, then channel-wise. Then, we obtain an image-like representation, which is fed to the main TCN. During experimentation, the model achieved a classification accuracy of 83.73 % on the four-class MI of the BCI Competition IV-2a dataset, and an accuracy of 94.41 % on the High Gamma Dataset.
机译:当一个人想象一个任务而没有实际执行它时,产生电动机图像脑电图(MI-EEG)信号。在最近的研究中,MI-EEG已被用于瘫痪患者的康复过程,因此,准确地解码MI-EEG信号是一个重要的任务,并且由于低信噪比和变化而困难的任务受试者之间的脑波。诸如卷积神经网络(CNN)的深度学习技术已经对提取有意义的特征来提高分类准确性的影响。在本文中,我们提出了TCNet-Fusion,一种固定的基于超参数的CNN模型,其利用多种技术,例如时间卷积网络(TCNS),可分离卷积,深度卷积和层的融合。该模型优于其他基于固定的超参数的CNN模型,同时保持与利用可变超参数网络的CNN模型,这是基于每个主题改变其超参数的网络,从而产生比固定网络更高的精度。它也使用比变量网络更少的内存。 EEG信号经历两个连续的1D卷积,首先与时域一起,然后是频道。然后,我们获得类似图像的表示,其被馈送到主TCN。在实验期间,该模型在BCI竞赛IV-2A数据集的四类MI上实现了83.73%的分类准确度,高伽马数据集的精度为94.41%。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第8期|102826.1-102826.9|共9页
  • 作者单位

    King Saud Univ Coll Comp & Informat Sci Dept Comp Engn Riyadh Saudi Arabia;

    King Saud Univ Coll Comp & Informat Sci Dept Comp Engn Riyadh Saudi Arabia;

    King Saud Univ Coll Comp & Informat Sci Dept Comp Engn Riyadh Saudi Arabia|King Saud Univ Coll Comp & Informat Sci Ctr Smart Robot Res Riyadh Saudi Arabia;

    King Saud Univ Coll Comp & Informat Sci Dept Comp Engn Riyadh Saudi Arabia|King Saud Univ Coll Comp & Informat Sci Ctr Smart Robot Res Riyadh Saudi Arabia;

    King Saud Univ Coll Comp & Informat Sci Dept Comp Engn Riyadh Saudi Arabia|King Saud Univ Coll Comp & Informat Sci Ctr Smart Robot Res Riyadh Saudi Arabia;

    King Saud Univ Coll Comp & Informat Sci Dept Comp Engn Riyadh Saudi Arabia|King Saud Univ Coll Comp & Informat Sci Ctr Smart Robot Res Riyadh Saudi Arabia;

    King Saud Univ Coll Comp & Informat Sci Dept Comp Engn Riyadh Saudi Arabia|King Saud Univ Coll Comp & Informat Sci Ctr Smart Robot Res Riyadh Saudi Arabia;

    King Saud Univ Coll Comp & Informat Sci Dept Comp Engn Riyadh Saudi Arabia|King Saud Univ Coll Comp & Informat Sci Ctr Smart Robot Res Riyadh Saudi Arabia;

    King Saud Univ Coll Comp & Informat Sci Ctr Smart Robot Res Riyadh Saudi Arabia|King Saud Univ Coll Comp & Informat Sci Dept Comp Sci Riyadh Saudi Arabia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Motor imagery; Electroencephalography (EEG); Temporal convolutional network;

    机译:电机图像;脑电图(EEG);时间卷积网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号