首页> 外文期刊>Biomedical signal processing and control >sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network
【24h】

sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network

机译:采用多分支神经网络,基于Semg的连续估计人类较低肢体运动

获取原文
获取原文并翻译 | 示例

摘要

Surface electromyography (sEMG) has the potential for human lower limb movement analysis, including gait phases recognition and joint angle estimation, which can provide a great level of human interaction with the exoskeleton orthotic devices. In this paper, a method based on deep learning is proposed, which maps the multichannel sEMG signals to human lower limb movement, including 4 different gait phases and 3 flexion/ extension joint angles. First, five time-domain features and spectrogram data as frequency domain features are extracted from the sEMG data from 8 muscles of right legs. Then, a multi-branch neural network (MBNN) with convolutional neural layers and recurrent neural layers is constructed, which uses both the extracted features and raw data as input to analyze human movement. Experimental results show that the mean accuracy of classification of our proposed methods can reach high level (90.92 +/- 3.58% for speed dependent and 85.04 +/- 5.14% for speed independent). Meanwhile, average of the root mean square error between estimated and real joint angles is (3.75 +/- 1.52 degree for speed dependent and 6.12 +/- 2.54 degree for speed independent). These results indicate that the proposed method can be used to facilitate adoption of exoskeleton orthotic device in real-life applications, with gait phases determining impedance characteristic of devices and angles estimating joint movement.
机译:表面肌电图(SEMG)具有人的低肢运动分析的可能性,包括步态阶段识别和关节角度估计,其可以提供与外骨骼矫形器件的较大水平的人类相互作用。在本文中,提出了一种基于深度学习的方法,将多通道SEMG信号映射到人的下肢运动,包括4个不同的步态阶段和3个屈曲/延伸接头角度。首先,从右腿的8个肌肉从SEMG数据中提取五个时域特征和频谱图数据。然后,构造具有卷积神经层和复发神经层的多分支神经网络(MBNN),其使用提取的特征和原始数据作为输入以分析人体运动。实验结果表明,我们所提出的方法的分类的平均准确性可以达到高水平(速度依赖于90.92 +/- 3.58%,速度独立于85.04 +/- 5.14%)。同时,估计和实际接头角之间的根均方误差的平均值(3.75 +/- 1.52度,速度依赖于6.12 +/- 2.54度)。这些结果表明,该方法可用于促进在现实寿命应用中采用外骨骼矫形器件,具有远程相确定装置的阻抗特性和估计关节运动的角度。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第2期|102781.1-102781.9|共9页
  • 作者单位

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China|Beihang Univ Beijing Adv Innovat Ctr Big Data Based Precis Med Beijing 100191 Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China|Beihang Univ Beijing Adv Innovat Ctr Big Data Based Precis Med Beijing 100191 Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China;

    Bauman Moscow State Tech Univ Dept Automat Control Syst Moscow 105005 Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Surface EMG; Gait phases recognition; Joint angle estimation; Multi-branch neural network;

    机译:表面EMG;步态阶段识别;关节角度估计;多分支神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号