首页> 外文期刊>Biomedical signal processing and control >An upper limb movement estimation from electromyography by using BP neural network
【24h】

An upper limb movement estimation from electromyography by using BP neural network

机译:基于BP神经网络的肌电图上肢运动估计。

获取原文
获取原文并翻译 | 示例

摘要

The body electromyography (EMG) signals contain a large amount of information related to the movement of the human body. Identifying the patient's movement intention from the EMG signals is the key to controlling the exoskeleton to assist their movement. In order to accurately extract the information about the patient's movement intention from the EMG signals, we preprocessed the EMG signals including signals amplification, denoising, biasing and normalization. Then we extracted the features of EMG signals from the time domain, frequency domain, and time-frequency domain respectively. Based on the features obtained, we used the Matlab neural network toolbox to train BP neural network and tested the established continuous movement control model. The results suggested that the angles estimated by the continuous movement control model had smaller errors. In addition, instead of the traditional working mode that used the PC to process the EMG signals, we used the STM32 microcontroller to perform real-time control of the upper limb exoskeleton, which greatly reduced the size of the control equipment and provided convenience for the patient's rehabilitation training. (C) 2018 Elsevier Ltd. All rights reserved.
机译:人体肌电图(EMG)信号包含大量与人体运动有关的信息。从EMG信号中识别患者的运动意图是控制外骨骼协助其运动的关键。为了从EMG信号中准确提取有关患者运动意图的信息,我们对EMG信号进行了预处理,包括信号放大,去噪,偏置和归一化。然后分别从时域,频域和时频域提取了肌电信号的特征。基于获得的特征,我们使用Matlab神经网络工具箱训练BP神经网络,并测试了建立的连续运动控制模型。结果表明,连续运动控制模型估计的角度误差较小。此外,我们使用STM32微控制器来代替上位机的传统工作模式,而是使用STM32微控制器对上肢外骨骼进行实时控制,这大大减小了控制设备的尺寸,并为病人的康复训练。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号