首页> 外文期刊>Biomedical signal processing and control >Classification and analysis of epileptic EEG recordings using convolutional neural network and class activation mapping
【24h】

Classification and analysis of epileptic EEG recordings using convolutional neural network and class activation mapping

机译:使用卷积神经网络和级激活映射癫痫脑电图录音的分类与分析

获取原文
获取原文并翻译 | 示例

摘要

Electrical bio-signals have the potential to be used in different applications due to their hidden nature and their ability to facilitate liveness detection. This paper investigates the feasibility of using the Convolutional Neural Network (CNN) to classify and analyze electroencephalogram (EEG) data with their time-frequency representations and class activation mapping (CAM) to detect epilepsy disease. Several types of pre-trained CNNs are employed for a multi-class classification task (AlexNet, GoogLeNet, ResNet-18, and ResNet-50) and their results are compared. Also, a novel convolutional neural network architecture comprised of two horizontally concatenated GoogLeNets is proposed with two inputs scalograms and spectrogram of the eplictic EEG signal. Four segment lengths (4097, 2048, 1024, and 512 sampling points) with three time-frequency representations (shorttime Fourier, Wavelet, and Hilbert-Huang transform) are statistically evaluated. The dataset used in this research is collected at the University of Bonn. The dataset is reorganized as normal, interictal, and ictal. The maximum achieved accuracies for 4097, 2048, 1024, and 512 sampling points are 100 %, 100 %, 100 %, and 99.5 % respectively. The CAM method is used to analyze discriminative regions of time-frequency representations of EEG segments and networks' decisions. This method showed CNN models used different time and frequency regions of input images for each class with correct and incorrect predictions.
机译:由于其隐藏性质及其促进活力检测的能力,电气生物信号具有在不同应用中使用的潜力。本文研究了使用卷积神经网络(CNN)对脑电图(EEG)数据进行分类和分析其时频表示和类激活映射(CAM)来检测癫痫疾病的可行性。用于多级分类任务(AlexNet,Googlenet,Reset-18和Reset-50)采用几种类型的预训练CNN,并比较它们的结果。此外,提出了一种由两个水平级联的陀螺仪组成的新型卷积神经网络架构,其具有两个输入尺度图和EPLictic EEG信号的频谱图。统计评估四个时间频率表示(短时间傅立叶,小波和Hilbert-Huang变换)的四个段长度(4097,2048,1024和512采样点)。本研究中使用的数据集在波恩大学收集。数据集重新组织正常,互换和ictal。对于4097,2048,1024和512个采样点的最大达到的精度分别为100%,100%,100%和99.5%。 CAM方法用于分析EEG段和网络决策的时频表示的判别区域。该方法显示CNN模型为每个类的输入图像的不同时间和频率区域使用正确且不正确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号