首页> 外文期刊>Biomedical signal processing and control >Person-identification using familiar-name auditory evoked potentials from frontal EEG electrodes
【24h】

Person-identification using familiar-name auditory evoked potentials from frontal EEG electrodes

机译:使用来自额eeg电极的熟悉名称听觉诱发电位的人识别

获取原文
获取原文并翻译 | 示例

摘要

Electroencephalograph (EEG) based biometric identification has recently gained increased attention of researchers. However, state-of-the-art EEG-based biometric identification techniques use large number of EEG electrodes, which poses user inconvenience and consumes longer preparation time for practical applications. This work proposes a novel EEG-based biometric identification technique using auditory evoked potentials (AEPs) acquired from two EEG electrodes. The proposed method employs single-trial familiar-name AEPs extracted from the frontal electrodes Fp1 and F7, which facilitates faster and user-convenient data acquisition. The EEG signals recorded from twenty healthy individuals during four experiment trials are used in this study. Different combinations of well-known neural network architectures are used for feature extraction and classification. The cascaded combinations of 1D-convolutional neural networks (1D-CNN) with long short-term memory (LSTM) and with gated recurrent unit (GRU) networks gave the person identification accuracies above 99 %. 1D -convolutional, LSTM network achieves the highest person identification accuracy of 99.53 % and a half total error rate (HTER) of 0.24 % using AEP signals from the two frontal electrodes. With the AEP signals from the single electrode Fp1, the same network achieves a person identification accuracy of 96.93 %. The use of familiar-name AEPs from frontal EEG electrodes that facilitates user convenient data acquisition with shorter preparation time is the novelty of this work.
机译:基于脑电图(EEG)的生物识别识别最近获得了研究人员的增加。然而,最先进的基于EEG的生物识别技术使用了大量的EEG电极,其造成用户不便,并且为实际应用的制备时间造成更长的准备时间。该工作提出了一种使用来自两个EEG电极获取的听觉诱发电位(AEP)的基于EEG的生物识别技术。所提出的方法采用从正电极FP1和F7提取的单试型熟悉名称AEP,其便于更快和用户方便的数据采集。在本研究中使用了在四个实验试验中的20个健康个体中记录的EEG信号。众所周知的神经网络架构的不同组合用于特征提取和分类。具有长短期存储器(LSTM)和具有门控复发单元(GRU)网络的1D卷积神经网络(1D-CNN)的级联组合给出了99%以上的人识别准确性。 1D-CONTOLOOLALAL,LSTM网络使用来自两个正电极的AEP信号实现了99.53%的最高人物识别精度为99.53%,半总误差率(HTER)为0.24%。利用来自单电极FP1的AEP信号,同一网络实现了96.93%的人识别精度。使用熟悉的名称AEPS从额外的eeg电极促进用户方便的数据采集,准备时间更短的是这项工作的新颖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号